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THE SHELL WITH DOUBLE CURVATURE
CONSIDERED AS A PLATE ON AN
ELASTIC FOUNDATION

U.D.C. 624.074.4

From the differential equation of the doubly curved shell in terms of the
displacement components u, v and w it is apparent that, in so far as the
Sflexural phenomena are concerned, the shell can be considered as a flat plate
on an elastic foundation, at any rale in a region — of sufficiently small size
to be regarded as quasi-Euclidean — around the vertex of the osculating
paraboloid. The modulus of the elastic foundation is dependent on the shell
thickness and the principal curvatures of the middle surface. The actual load
on the plate must, however, be increased by a deformation load depending on
the displacements u and v in the middle surface.

Various aspects of this approach to the problem are verified by reference to
simple examples and to the resulls of tests on a large model of an equilateral
hyperbolic paraboloid shell.

0 Introduction

It is a well-known fact that a curved shell can resist loading acting perpen-
dicularly to the middle surface by the agency of membrane forces. In those
cases where the membrane reactions can be resisted and the corresponding
deformations of the shell can freely take place, a force distribution pattern
constituted solely by membrane forces is a good approximation of the trans-
mission of forces that actually occurs — for a statically possible stress distri-
bution in which bending and torsion are avoided will come close to producing
the minimum strain energy in the structure. The usual procedure, therefore,
is to begin by calculating the distribution of forces in the shell according to
the membrane theory. Then a set of correcting forces will have to be applied
so as to take the best possible account of the boundaries (edge beams or sup-
ports) of the shell, where the deformations due to the said state of membrane
stress are prevented from freely developing. Let us suppose the edge member to
be detached from the shell, thus enabling these deformations to develop freely:
the edge of the shell and the edge member would then no longer fit at their
junction. A proper fit can be obtained only if the edge members exerts forces
(normal and shear forces) and moments (bending and torsion moments) on
the edge of the shell and if, conversely, the shell exerts opposite forces and mo-
ments on the edge member in such a manner that the additional deformations
associated with these forces and moments enable complete adaptation (struc-
tural fit) to be achieved. The calculation of these edge disturbances, which
must be superimposed upon the state of membrane stress, is done with the aid
of the so-called flexural theory of shells.
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Simplified flexural theories are already available for shells shaped according
to simple mathematical surfaces such as the spherical and the cylindrical shell.
A. L. Bouma has applied a theory of this kind to elliptic and hyperbolic para-
boloid shells bounded by four principal parabolas.t)

Even these simplified theories undeniably involve a fairly considerable
amount of arithmetical computation; and for doubly curved shells of arbitrary
shape or combinations thereof (which may or may not be bounded by elastic-
ally deflecting and/or elastically rotating edge beams), such as are rather
frequently employed in modern architecture, there is as yet no serviceable
theory for the analysis of flexural disturbances.

The distribution of the edge disturbance moment from the edges towards
the interior of the shell surface is known in general to have the character of a
damped wave. An obvious question is whether it would not fundamentally
be possible to calculate the approximate magnitude of this edge disturbance
moment by means of the theory of the elastically supported beam — for in a
beam of that kind the edge disturbances display a damped-wave distribution.
Thus J. W. GECKELER 2), as long ago as 1926, gave an approximate analysis
for the edge disturbance in a spherical shell which leads to the theory of the
clastically supported beam. Furthermore, in 1953 K. HruBaN 3) analysed the
edge disturbances along the curved edges of a number of hyperbolic para-
boloid north-light shells with the theory of the elastically supported beam,
while in 1958 W. S. Wrassow 4), with reference to the spherical shell and the
equilateral hyperbolic paraboloid shell, called attention to the analogy with
the elastically supported plate.

Finally, for the estimation of certain edge disturbance moments associated
with the structural research on the Philips Pavilion at the Brussels World
Exhibition in 1958, the present author also proposed a method of analysis
based on the theory of the elastically supported plate.5)

If permissible, the method of analysis based on the elastically supported
plate or beam undoubtedly constitutes a considerable simplification. This is
because the differential equation of eighth order on which the flexural theory
of shells is based is replaced by an equation of fourth order, which provides a
simpler means of gaining an insight into the anticipated edge disturbances,
this being of great importance to the designer.

') Bouma, A. L. Some applications of the bending theory regarding doubly curved shells.
Proc. Symposium on Theory of Thin Elastic Shells (I.U.T.A.M.), North-Holland Publ. Co.,
Amsterdam, 1960.

?) GECKELER, J. W. Uber die Festigkeit achsensymmetrischer Schalen. Forschungsarbeiten
Ing. wesen, No. 276, Berlin, 1926.

*) Hrusan, K. The general theory of saddle-shaped shells (Czech), Techn. Univ. Brno, 1953,
1) Wrassow, W. S. Allgemeine Schalentheorie und ihre Anwendung in der Technik, Aka-
demie-Verlag, Berlin, 1958, pp. 330 and 372.

®) VREEDENBURGH, C. G. J. The hyperbolic-paraboloidal shell and its mechanical proper-
ties, Philips Technical Review, Vol. 20, No. 1, 1958/1959.



On the other hand, when applying an approximate method of analysis it is
essential to have a clear conception of the quantities that are being neglected
and of the assumptions made, in order to be able to judge whether useful
results are likely to be obtained in any particular case.

1 The doubly curved shell and the elastically supported plate

Consider a point O in the middle surface of a doubly curved shell of arbitrary
shape. This point is the origin of a rectangular co-ordinate system XYZ. Let
the plane OXY coincide with the plane tangential to the middle surface at
O and let the axis OZ be directed along the normal (Fig. 1).

In the immediate vicinity of O the shape of the middle surface can, as we
know, be replaced by a paraboloid, the so-called osculating paraboloid, which
has the following equation:

0, =X LV
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In these equations 74, 7, and 74y respectively denote the radii of curvature
of the middle surface at O in the x and y directions and the radius of torsion for
these directions, while £z, ky and ksy respectively denote the curvatures in the
x and y directions and the warp for these directions.

Fig. 1. OZ = normal at point O of the middle sur-
face; S, and S, = normal sections; r,, and r, = radii o L£ X
of curvature of S, and S, at O (positive if the centre

of curvature has a positive co-ordinate z); u, v and w Sy
= displacement components (positive if the displace- v
ments take place in the positive directions of the co- S
ordinate axes).

From (2) we obtain by differentiation:
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The equation of equilibrium for a shell element at O in the z-direction is:
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co-ordinates of a point in the middle surface

displacement components of a point in the middle surface in the directions
%,y and z respectively

radii of curvature of the middle surface in the directions x and y respectively,
and the radius of torsion for these directions
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curvatures of the middle surface in the directions x and y respectively, and

the warp for these directions
principal radii of curvature of the middle surface
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principal curvatures of the middle surface

shell normal forces in the directions x and y respectively, and the shell shear
force

shell moment

shell shear force (transverse shear)

strains in the directions x and y respectively, and angular deformation due to
shear (deviation from right angle)

elastic modulus and shear modulus

Poisson’s ratio

shell thickness

flexural rigidity of the shell

modulus of the elastic foundation

characteristic length

load per unit area of the middle surface in the direction of the normal
deformation load
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By substituting the relations (6) into (4) and having regard to (3), we obtain:

u o 2
KAAw = p, - E8 [ g kw( “ L —”) + ky -—] — Ed(k2+ 2k kAw (7)
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Essentially this equation is valid for the shell in the immediate vicinity of O,
but it is approximately valid also for points of the shell situated not too far
from O. For practical purposes we may consider this region to be bounded
by a circle having O as its centre and having a radius equal to half the smallest
principal radius of curvature at O. Then the ratio between the rise and the
chord of all the normal sections of the osculating paraboloid will be smaller
than 1/ so that the corresponding region of the shell can, as a rule, be assumed
to be quasi-Euclidean.

Putting:
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we can now write equation (7) as follows:

KAAw = p+p,—cw . . o« o . . .. oo .. ... (10

The latter equation is seen to be the differential equation of a flat plate,
having a stiffness K, supported on an elastic foundation with a modulus of
reaction (or modulus of foundation) ¢, this plate being subjected to a real
load p, and an additional load p, which is dependent on the differential quo-
tients of the displacement components z and v (the displacements in the middle
surface of the shell).

This last-mentioned load will be called the ‘“‘deformation load”. The values
of p, and ¢ are invariant, i.e., they are independent of rotation of the co-ordi-
nate system XYZ about the origin O.

Choosing the axes OX and OY so as to coincide with the principal directions
of curvature of the middle surface at O, we obtain with k; = k1, ky = k2 and
key = 0:
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If the factor » is also taken into account, the relations (11) and (12) become:
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while the plate stiffness in (10) becomes:
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Summarising, it is apparent from the foregoing that the displacements w in
the direction of a normal at a point of a quasi-Euclidean portion of an arbi-
trary shell are the same as those of a flat plate on an elastic foundation, the
edge support conditions of the plate being the same as those of the shell. The
modulus of the foundation is determined by the local principal radii of cur-
vature and the local thickness of the plate according to formula (12) or (14).
Besides the normal load p; it is, however, necessary also to apply an additional
load p, (the so-called deformation load) in the direction of the normal, accord-
ing to formula (11) or (13).

In contrast with the load p,, which is known, as given quantity, the de-
formation load is, generally speaking, unknown. Often, however, if the latter
is not neglected, it can be approximately determined; some examples of this
will be given in due course. In the design of a shell it is, of course, advisable to
endeavour to keep the displacements « and v as small as possible by employing
sufficiently rigid edge members of the shell — so that, in particular, no exten-
sionless deformations?!) will occur — or by the use of appropriately chosen
prestresses.

In some cases these displacements are even zero, e.g., in a spherical shell or
a cylindrical shell subjected to a constant normal load and supported in the
manner indicated in Fig. 2, so that no edge
disturbances occur. Another example of a
case where the deformation load is zero is
afforded by the cone of revolution subjected

Fig. 2. Spherical shell or circular cylindrical shell
subjected to uniformly distributed radial load,
without edge disturbances.

to axially symmetrical loading when » = 0. If the X-axis is made to coincide

with a generating line of the surface, then obviously 41 = 0 and _a_v =0, so
7y

that p, = 0 according to (13).
The application of the plate analogy becomes particularly attractive in a
case where the edge disturbance moments are confined to four strips along the

1) For the significance of “‘extensionless deformations” see: Bouma, A. L., Stijtheid en sterkte
van schalen, Waltman, Delft, 1960.



Fig. 3. Hyperbolic paraboloid shell, bounded by
four generating lines and subjected to uniformly
distributed load, considered as an elastically sup-
ported plate. The edge members are very stiff
beams. The shaded area is the edge disturbance
zone. In the region surrounded by this zone the
deflection w of the plate is constant and the bend-
ing moment is therefore zero in all directions. The
edge disturbance zone has a maximum width

of 4A.

edges, as indicated in Fig. 3 for a rectangular hyperbolic paraboloid shell
bounded by generating lines.

Consider a “beam” cut from the plate perpendicularly to the edge and
passing through the zone free from disturbances. Equation (10) can then be
simplified to:

d4w -
K—’—sz“l“pz_cw L T T (16)
dax?
if the X-axis is chosen in the direction of the axis of the beam.
Having regard to (12), we may put:
¢ 4‘ . E@(klz—l—kzz)

K ¢ 1/12E®

Hence:
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The quantity 4, which is known from the theory of the beam on an elastic
foundation and has the dimension of a length, is sometimes termed the char-
acteristic length. It can often be assumed that, depending on the mode of
support, the edge disturbances will, for practical purposes, no longer be per-
ceptible beyond a strip having a width ranging from 4 to 44 along the edges of
the shell.
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2 The foundation modulus c

Consider a circular cylindrical shell rectangular on plan, which is subjected
to a uniformly distributed radial load p acting over its entire surface and
which is so supported at the edges as to be free from disturbances.

Let the radius of the circle be 7 (Fig. 2). Since, as already stated, in this case
the displacements # and v are both everywhere zero, the deformation load is
zero. Furthermore, the displacement w is constant, and — having regard to

(10) — we therefore find:

1
Introducing 1 = — and k» = 0 we then obtain, according to (14):
r

Eé
T (1—2)p2
so that finally:
(1—»2)pr2
sz....................(20)

In this case the displacement can also be calculated directly, as follows. The
compressive (tangential) “hoop” stress in the shell is:

pr
0
As the lateral contraction is, in the present case, prevented in the longitudinal
direction of the shell, the compressive stress in the direction of the generating
line will be:
Ol=w0 . (22)

The specific compressive strain along the circle is therefore:

—12)0 1 —»2)pr
82(1E2)=<E6>p N )

[

(21)

Since this strain is equal to it (inasmuch as u = v = 0), we arrive at the result
embodied in (20). 4

Now let us consider a spherical shell, with a circular base, subjected to a
uniformly distributed radial load p acting upon its entire surface. Let r be the
radius of the sphere and let the shell be again so supported at the edge as to
be free from disturbances.

In this case too all the points on the sphere will undergo only (constant)
radial displacements w, so that « and v, and therefore also the deformation
load, will be zero at all points.



The displacement w is obviously again expressed by the formula (19), but
the foundation modulus ¢ for the sphere is different from that for the cylindrical
shell. |
Introducing k1 = ke = S wenow have, according to (14):

_ ES [1+2v+1]_ 2E$
Tl el T e T e T (1—y)r?
so that:
(1—v)pr2
@ 9E» 24

By direct calculation we obtain:

pr d (l—w)pr w
oo T ems T
i.e., wis found to have the same value as that given by (24).

These simple calculations may be regarded as providing a check on the
correctness of the formula (14) for the foundation modulus ¢ if the shell is con-
sidered as a plate on an elastic foundation and the deformation load is zero.
Since — as will be apparent in due course — both the actual load and the foun-
dation modulus of the analogous plate are modified as a result of taking the
deformation load into account, the foundation modulus according to (12) or
(14) (which therefore relates to the case where the deformation load is zero)
will be called the “primary” foundation modulus. The modulus modified by
the deformation load will be called the “secondary” foundation modulus.

o

3 The deformation load

Consider a circular cylindrical shell having an elongated rectangular shape
on plan and subjected to a uniformly distributed radial load p acting upon its
entire surface. In this case, however, the shell is assumed to be completely
restrained at all its edges. Let the Y-axis be chosen in the longitudinal direction
of the shell, and the X-axis in the transverse direction (Fig. 4).

Evidently, at a sufficiently great distance from the transverse edge AB the
disturbance emanating from this edge and proceeding in the Y-direction will

. . ow

have been practically damped out, so that we can write here 5 = 0. Now
2

consider a transverse strip of unit width cut from the shell in this region. For

1
the deformation load we then obtain, on introducing k1 = — and k2 = 0 and
having regard to (11): !
- ES ou
T ¢}

r 0x
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Fig. 4. Long circular cylindrical shell rectan-
gular on plan, completely restrained at all the
edges and subjected to uniformly distributed
radial load. Outside the edge disturbance zone
of the short edge (shaded area) a transverse
strip cut out of the shell no longer behaves as a
beam on an elastic foundation, but as an arch
fixed at both ends, in which the line of action
of the horizontal tensile force passes through
the elastic centre. This is caused by the defor-
mation load.
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and having regard to the first equation (5):

_ kS [nx w]
2 — — | /=< - L T 26
? r LES + r (26)
As the effect of bending on 7, is very slight in the present case, we can write
ng = —pr, so that equation (10) becomes:
Edw
KAAw = p—p +—
r
which, on introducing
ES 0
c=""and 22 =0
r2 oy
gives:
94
Um0 @

ox4
In this case the loading of the analogous plate and the foundation modulus
have both become zero in consequence of the deformation load, and the dis-
placements w of the cut-out strip CD are governed only by an edge load at
the points of restraint C and D of an unloaded beam. This restraint reaction
is not difficult to determine. It is a horizontal tensile force H passing through

n
L4 from the

. . 7 sl
the centre Z, of the arch, Z, being located at a distance

centre M. ¢
For » = 0 the magnitude of H can be calculated from the relation:
1273 2 sin? 2pr?
H—EQ(SLS ((p+1/z sin 2¢ — s gv) = %sin @ .. ... .. (28)
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Fig. 5. General view of test arrangement for a hyperbolic paraboloid shell in the Stevin
Laboratory. Overall dimensions of the model on plan 5m X 5 m.

If H is known, the displacement wy at the crown of the arch can be calculated.
By considering an elastically supported beam strip with its axis along OY we
then obtain — with 2 = 0.76/r6 according to (18) — the following expressions
for the moment and for the shear in the shell at O1):

E(53w0
mOZ—W— e e s 4 e e & e s e e & e 2 e e s e a a (29)
E63w0
QOZW.....................(30)

Mention should be made of an interesting case where it was possible to check
the effect of the deformation load against the actual behaviour, namely, the
research conducted on a large model of a hyperbolic paraboloid shell in the
Stevin Laboratory, Delft, by C. van DER ScHENK in 1958.2) The structure in
question was a system of four equilateral hyperbolic paraboloid shells, each of
1) See also: Randstoringen bij axiaalsymmetrisch belaste omwentelingsschalen, IBC-Mede-
delingen, Vol. 6, No. 1, January 1958.

%) VAN DER ScHENK, C. Onderzoek naar de spanningsverdeling en de sterkte van een hyppar-
schaal, Part II, Techn. Univ., Delft, 1958.
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Fig. 6. Underside view of hyperbolic paraboloid shell with loading devices. Shell thickness
3 cm. Cross-sectional dimensions of hangers 10 cm X 10 cm, other edge members 15 cm X
15 cm.
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Fig. 7. Reinforced concrete hyperbolic paraboloid shell with all four bays carrying a uni-
formly distributed load p = 1000 kg/m?; 1 = 22.4 cm at B.

EF considered as a beam on an elastic foundation, completely restrained at E and elastically
restrained at F.
o measured shell moments
— — — calculated without deformation load
calculated with deformation load equal to p
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which was square on plan and which were interconnected by stiff ridge
beams, while the inclined edges were also provided with stiff beams (see Figs.
5, 6 and 7).

Consider the case where the four bays carry a uniformly distributed load
p = 1000 kg/m? over the entire surface.

Having regard to the characteristic length (22.4 cm at the vertex), it was
anticipated that the case envisaged in Fig. 3 would occur. Hence the elastically
supported plate was locally replaced by an elastically supported beam. Con-
sider a beam strip of unit width cut out of the bay ABCD along the generating
line EF (Fig. 7). This beam can be regarded as completely restrained at the
ridge beam. On the other hand, it is elastically restrained at its junction with
the edge beam at F. Let x be the distance measured to the completely restrained
end of the strip. The distribution pattern of the moment in the elastically
supported beam for a uniformly distributed load p will then, as we know, be
given by:

_x X 7T
mg = —1/spA2 e Z[/Qcos(i—[—z) B 1))
Neglecting the deformation load, we obtain with p = 0.1 kg/cm? and 4 = 22.4
cm the following value for the restraint moment at E : m; = —25.1 kg. The

maximum positive moment occurs at x = 5 A and is 5.2 kg.

In Fig. 7 the distribution curve of the moments calculated in this way
emanating from E is shown dashed.

The moments emanating from the elastically restrained support F can
similarly be calculated and are also shown dashed in Fig. 7. On comparing
the values calculated by neglecting the deformation load with the measured
actual moments (indicated by the small circles in Fig. 7) we see that there is
indeed good agreement in the pattern of the distribution, but that the calcu-
lated values are much too low. If;, to allow for the effect of the deformation load,
we consider twice as large an actual load on the shell (load factor = 2), we
obtain the curve drawn as a full line in Fig. 7; this curve is in better agreement
with the measured values. As emerged from a further investigation of the
problem, the order of magnitude of the deformation load could, in the present
case, be explained with the aid of the measured strains of the edge members,
ov
ox

As regards the peak values of the moments at E and F it is to be noted that
these are usually not so serious as they may appear to be.

For one thing, acute angles are always more or less chamfered in actual
practice. Furthermore, if the limit of proportionality of the material is exceeded,
a stress peak will be levelled down, while a residual stress of opposite sign will
be produced on unloading. Also, if the load on the shell under present consid-

from which it was possible to calculate average values for a_u and
Y
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Fig. 8. Underside view of a
fractured bay, showing cracks
extending approximately par-
allel to its edges.

eration is gradually in-
creased, the first cracks
are likely to occur along
the edge members. With
further increased loading
these cracks will function
as linear hinges. The elas-
tically supported beam
EF (Fig. 7) will than have
hinged bearings at both
ends, with the result that
the maximum positive
momentswill, as we know,

. JT
occur, at distances 2 y)

from the ends. In the ul-
timate condition (i.e., at
failure) a second set of
yield- lines, parallel to the edges, will therefore have to develop at these points.
In the test this was actually found to be so (see Fig. 8).

We can utilise this knowledge for calculating by means of the yield-line
theory the ultimate load of the shell loaded over its entire surface.

For the sake of completeness it should, finally, be mentioned that the total
failure of the shell in question did not occur until a load of over 6000 kg/m?2
was reached!

4 Consideration of a diametral beam strip of the circular
elastically supported plate

Let us again consider a spherical shell circular on plan and subjected to a
uniformly distributed load p. The edges are completely restrained, however.
If the rise/chord ratio of the meridian section is not too large we can, for cal-
culating the deformations w, replace the spherical shell by an elastically
supported flat circular plate with a radius equal to that of the base of the shell
(or, preferably, with a radius equal to the generating line of a cone tangential
to the spherical shell at the base circle), this plate being completely restrained
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at its perimeter. Let  be the radius of the sphere and neglect ». Then, according
to (12), the primary foundation modulus will be:

9Es
=20 (32

r2

Supposing this plate to be subjected to a load p, the displacements w and the
shell moments can be found either analytically or experimentally.

We may ask ourselves whether it would, in this case too, not be sufficient
merely to consider a diametral beam strip (see Fig. 9).

Fig. 9. Spherical shell, circular on plan, con-
sidered as an elastically supported plate. The
edge is completely restrained. The shaded area
is the edge disturbance zone. AB is a beam strip
cut out of the plate. As part of the plate, how-
ever, the beam strip is subjected along its sides to
shear forces and torsion moments (acting in the
regions AC and BD) which have a relieving effect
on the free beam.

w
°

Neglecting », we obtain — according to formule (24) — for the displacement
of the spherical shell outside the zone of edge disturbance:

_pr
T 2ES

The deformation equations for calculating the restraint reactions mo and go
of the elastically supported beam of unit width will then be:

wo

mok  qol?

EI ~— 2EI

qdﬁ molz (33)

Pt — = W

9oEI  2EI '

Hence:

2ETw

my = 7-‘3 : (34)
4EIw0

Qo =7 (35)
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With formula (17) we obtain for the sphere:

or
A2 = e e e e e e 36
ST %)
and for the circular cylinder with radius r:
or
AP =—. 37

Neglecting the deformation load, we must, for calculating the restraint mo-
ment 7mo, substitute 4,2 according to (36) for 42 in formula (34).

It should be noted, however, that by considering a detached diametral
beam strip too unfavourable a distribution of forces is found, because in the
edge disturbance zones AC and BD, as part of the complete circular plate,
shear forces and torsion moments are actually present which have a relieving
effect.1)

Consequently the calculated moments will be larger than those occurring
in reality. A further reduction will in this case be caused by the deformation
load.

On substituting for 42 in formula (34) the value 4.2 according to (37), which
relates to a cylinder, we obtain the restraint moment according to GECKELER’S
approximate theory, which is, however, smaller than the correct value.?)
Hence, if the deformation load is neglected, it is safer to apply the characteristic
length based on the primary foundation modulus of the sphere. The fact the
characteristic length of the cylinder of revolution occurs in GECKELER’s ap-
proximation can be explained with the aid of the deformation load. Because
of axial symmetry, we have:

ov _ ES ou Eb [nz w] Ny Ebéw

%0 h = _ 20 P
y et == m T,

(38)

r 72

E§

For — =1/5¢ (where ¢ is the primary foundation modulus for the sphere)
r
n
and putting — = —1/3p, which is an acceptable assumption if the central
r

angle of the spherical shell is not too small, the differential equation for a
meridian strip will be:

d4
k&Y — p—1/op+1octw—cw
dxt

1) In this connection it is appropriate to recall that, for example, in a circular plate uniformly
loaded over its whole area (freely supported or completely restrained at the perimeter), the
moments in a diametral beam strip, as part of the plate, are only #/; of those in the detached
beam subjected to the same load.

) Cf. TrmosuENko, S. Theory of Plates and Shells, McGraw-Hill, New York, 1940, pp.
472-475. See also HETENYI, M. Spherical Shells subjected to Symmetrical Bending, Publ. Int.
Ass. for Bridge and Struct. Eng., Vol 5, 1937/1938, pp. 173-175.
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or: Ka—; =1fp—llocw . . . . . . . . . . . . .. (39
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We see that the particular solution of this equation remains wp = - = Yo

¢

whereas the value of the foundation modulus has become half that for the
sphere, i.e., equal to that for the cylinder of revolution.

In his plate analogy for the feebly curved shell Wrassow also arrives at a
foundation modulus equal to that for the cylinder of revolution, this evidently
being — as in GECKELER’s method of analysis — correct only for axially sym-
metrical loading.

It should, however, be borne in mind that the load which has to be applied
to the analogous plate or beam may differ considerably from the actual load
on the shell.

In more general terms it can be said that, for a shell of revolution with
axially symmetrical loading and a meridian section of arbitrary shape the

ES
secondary foundation modulus will be —, where 5 is the second principal
T2

radius of curvature (length measured along the normal up to its intersection
with the axis of revolution).

0
For _a_v = 0 and neglecting », we obtain from (11) and (5):
)

_ ou E6 [m w
A
P ' ox n \E§ n
which in combination with (10) and (12) gives:
ES$
KMw=p, + 22— o L (40)
1 792
If » is not neglected, we obtain:
1 ES
KAAw:szr(—Jrf)nl—mw. ......... . (41)
rnoore re?

5 Conclusions

The conception of the doubly curved shell as an elastically supported plate
has much to commend it. In highly complex cases it would, for the present,
appear to be the only method available to the design engineer for estimating
the approximate magnitude of the edge disturbance moments. It should be
borne in mind, however, that a doubly curved shell can reasonably be re-
placed by a flat plate only if we confine ourselves to a so-called quasi-Euclidean
region, i.e., a region around the origin of the chosen system of co-ordinates
where the principles of plane geometry are still reasonably valid. This can be
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assumed to be so up to a rise/chord ratio of about 1/;. For calculating the pri-
mary foundation modulus at any particular point both the principal radii of
curvature must be taken into account.

This foundation modulus is valid only if the deformation load is zero or
negligible. If the deformation load is taken into consideration, then the actual
load on the analogous plate or beam as well as the primary foundation modulus
will, generally speaking, be affected. This gives rise to a secondary foundation
modulus. In shells of revolution with axially symmetrical loading this second-
ary modulus is dependent only on the second principal radius of curvature,
this being in agreement with the foundation modulus as applied by GECKELER
and Wrassow. In the case of a cylindrical barrel vault uniformly loaded over
its entire surface, presenting an elongated rectangular shape on plan and
supported on all four sides, the secondary foundation modulus may, for a
shell strip extending in the transverse direction, even become zero.

The analysis as a plate, or a beam, supported on an elastic foundation
appears to be capable of yielding useful results in dealing with spherical shells,
hyperbolic paraboloid shells bounded by generating lines, and elliptic para-
boloid shells rectangular on plan.l)

It will have to be further investigated whether this analysis can be applied to
other cases and also whether it can be applied if the deformation load is neg-
lected but suitable load factors are introduced at the same time.

1) GirkMmaNN, K. Flichentragwerke, 5th ed., Springer-Verlag, Vienna, 1959, pp. 462-464.
See also the publication mentioned in note 1 on p. 229 of that book.
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