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A description is given of an analogy by means of which it is possible, in a
relatively simple manner, to gain an insight into the behaviour of axially and
eccentrically compressed structural members in the elasto-plastic range. The
model was used in the course of an investigation that yielded results which are
embodied in Clause 47 of the Netherlands Standards Code of Practice for
Reinforced Concrete (G.B.V. 1962) (ultimate-load design). A member
loaded in the manner envisaged above is represented by a similarly loaded
block (the model) of light material floating in a liquid. By a simple analogy
the requisite inferences as to the member under consideration (stresses in
sections, etc.) can be drawn from the state of equilibrium into which, in the
test, the model is brought by means of appropriate loading.

0 Introduction

The results of an exhaustive investigation of the ultimate-load design of rein-
forced concrete columns as presently published in this issue (pp. 14 et seq.),
are based on an appropriate model analogy. Although this analogy had already
been studied by one of the present authors some years ago, an opportunity of
applying it for practical purposes had not earlier presented itself.

Now, however, it was found that by this means very satisfactory results could
be obtained in a relatively simple manner and with the aid of limited equip-
ment. Also, the analogy presented some worthwhile aspects in support of
considerations relating to buckling problems.

Although the analogy is applicable not only to reinforced concrete columns
but also to such members made of steel or some other material, its application
has hitherto been confined to reinforced concrete columns. Accordingly, the
present article more particularly gives a description of the experience that has
been gained with these and has yielded the results mentioned in the exordium.

1 Basis of the analogy model

A floating block can be used for representing the behaviour of a section, sub-
jected to bending and direct force, in a manner that can be visualized. Vertical
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forces acting upon that block cause it to be submerged so much deeper in the
liquid that the force applied to the block is compensated by the upward pres-
sure due to the water displaced.

There is an obvious analogy between the upward hydrostatic pressure and
the stress in a section of the same shape, and also between the deflections in
relation to the original position of the block and the strains at corresponding
points of the section. This will be elucidated with reference to a floating rectan-
gular block (Fig. 1) whose top surface is maintained parallel to the surface of
the liquid.

If a downward force N’ is exerted upon this block, then the latter will sink
so much farther into the liquid (so long as the top surface has not yet reached
the surface of the liquid) that the deflection is proportional to the force. When
the top surface of the block coincides with the liquid surface the maximum
attainable displacement of water — and therefore also the maximum counter-
acting pressure — is attained. With loads acting in the opposite direction (z.e.,
upwards) something similar will evidently occur.

The load-deflection diagram is given in Fig. 2. There is obvious agreement
with the mechanical properties of a material behaving elastically between two
pronounced yield stress levels.

If the model, before testing, is so loaded by an initial force that it is immersed
in the liquid to a depth m corresponding to half’its thickness, then the horizontal
axis in Fig. 2 will be shifted vertically in such a manner as to make the dia-
gram antimetric (see Fig. 3). Furthermore, N’ can of course be replaced by
the corresponding uniformly distributed compressive stress o’ = pz’; and N
can similarly be replaced by ¢ = yz. Dimensionless quantities can be marked
off on the axes, as indicated in Fig. 3. If the stress-strain diagram for steel, as
assumed in Clause 47, par. 1, of G.B.V. 1962, is likewise plotted as a dimen-
sionless graph (see Fig. 4), Figs. 3 and 4 are seen to be identical. The downward
deflection z" and the upward deflection z are analogous to the compressive
strain (shortening) &," and to the tensile strain (elongation) ¢, respectively. The
half thickness m corresponds to the strain & associated with the compressive
yield point or, alternatively, to the strain & associated with the tensile yield
point of the steel. “

A stress-strain diagram having the shape of a quadratic parabola can be
represented by similar means. For this purpose a model of triangular vertical
cross-sectional shape should be employed. In Fig. 5, by way of example, a
section of this kind on a rectangular base (triangular prism) is represented.
Fig. 6 gives the relation between the load and the downward deflection z’ or
upward deflection z. If, prior to testing, an initial force is so applied to the
prism that the underside thereof just touches the surface of the liquid, then the
horizontal axis in Fig. 6 will be shifted vertically by such an amount that
Fig. 7 is obtained. The diagram that we get thus is identical with the stress-
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Fig. 1. Axially (i.e., centrally) loaded
model.

Fig. 2. Relation between N and z for the
model in Fig. 1.
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Fig. 3. Same relation as in Fig. 2, but with Fig. 4. Stress-strain diagram according to
horizontal axis displaced (dimensionless). Clause 47, par. 1, G.B.V. 1962 (dimension-
less).
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Fig. 6. Relation between N and z for the
model in Fig. 5.
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Fig. 7. Same relation as in Fig. 2, but with Fig. 8. Stress-strain diagram according to
horizontal axis displaced (dimensionless). Clause 47, par. 1, G.B.V. 1962 (dimension-
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strain diagram for concrete, as assumed in Clause 47, par. 1, of G.B.V. 1962
— see Fig. 8 (the concrete is unable to resist tensile stresses). The deflection 2’
will then again be analogous to the compressive strain (shortening) e’. The
thickness n corresponds to the maximum compressive strain of the concrete
e’ = 3.59/00.

Other shapes of stress-strain diagrams can be simulated similarly.

With a model as described above it is possible, if the base of the model is
geometrically similar to the section to be investigated, to determine the be-
haviour of a steel or concrete section under the influence of an axial (i.e., cen-
trally applied) load.

If the model represented in Fig. 2 is subjected to a vertical downward force
N’ whose point of application is located eccentrically, the model will adopt a
tilted position, in such a manner that the resultant of the upward pressure is in
equilibrium with N’. An upward force N can similarly be applied. In Fig. 9
the model is shown in a tilted position of equilibrium, which was obtained from
an initial condition in which the model was immersed in the liquid to half its
thickness m. With the aid of this model it is possible to investigate the be-

IS neutral axis
S ile scrai k i
~o tensile strain m / tensile stress

compressive strain / compressive stress

Fig. 9.

haviour of a steel section, geometrically similar to the base of the model, under
the influence of an eccentric loading. The following data as to this behaviour
can be obtained from the model:

a. the strains at each point of the section (=the amounts of downward or

upward deflection) and the position of the neutral axis (see Fig. 9b);

b. the curvature, represented by the rotation angle of the model (see Section 3).
In the case of steel the shape of the compressive stress diagram can also be
obtained (see Fig. 9c).

The same applies to a concrete section, provided that it has at least one axis
of symmetry. The point of application of N should be located on this axis,
which also indicates the direction of bending. Perpendicular to this direction
the model has the triangular cross-sectional shape mentioned above.

2 Model for axially and eccentrically compressed reinforced
concrete sections

For determining the strains and stresses in axially and eccentrically compressed
reinforced concrete sections having at least one axis of symmetry it is a simple
matter to construct a model with the aid of the information given in Section 1.
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Fig. 10. Model for a rectangular reinforced concrete section.

Fig. 101) gives an example of a rectangular section (x = scale factor). When
loaded in the manner indicated, the concrete portion of the section will, in the
model, have to possess — perpendicular to the axis a—a — a triangular vertical
cross-sectional shape. For reasons of model testing technique this triangular
portion corresponding to the concrete has, in the model, been split up into two
prisms. The total base of the prisms is geometrically similar to the section under
investigation. As already stated, the thickness n corresponds to the maximum
concrete compressive strain &,” = 3.50/g0. The two small connecting beams in
the model represent the reinforcement 4 and A4’ respectively. The location of
these beams in the model corresponds to that of the reinforcement in the actual
section. The thickness 2m corresponds to the sum e+ |e.’| (e.g., 2 < 1.1430/gg
for mild steel with a yield stress of 24 kg/mm?, specified QR 24). As the mod-
ulus of elasticity of steel is a multiple of that of concrete, the volume of those parts
of the model which represent the steel will have to be appropriately enlarged
in relation to the concrete part. If the reinforced concrete section is so loaded
that everywhere a compressive strain (shortening) ¢ = &, = 3.50/yp occurs,
then:

N' = 04'bhi+ Ao,/ +A'e.

A/
or with v = Z}; and o = %:
N’ oo oo’
—_— = 1 e ! C s e e e e e e e e e e e e
b, 4w p + w p (1)

If the dimensions of the concrete part have been chosen (i.e., hy = hi/u;
bm = b/u and n), then the volume thereof is known. This volume is represented
by the term 1 in equation (1). If the concrete and steel qualities (o,,” and o,” =
= |o,|) are given, the ratio of the volume of the steel part to that of the concrete

1) Where necessary, the notation of G.B.V. 1962 has been retained, except that w = A/bh,
and not w = 100 4/bh,%, as in G.B.V. 1962.



part can be determined from the right-hand member. Thus the volume of the
small connecting beams is known. The thickness 2m follows from the thickness
n, so that then only the width and length remain to be determined. In order
to obtain as accurate a representation of reality as possible, the width of the
connecting beams will have to correspond approximately to the diameter of
the reinforcement, having due regard to the scale factor. Therefore that width
should be adjusted as nearly as possible; the length can then be calculated.

More complex cases, such as T-shaped, circular and diamond-shaped sec-
tions (see Fig. 11), can also be investigated, as well as sections in which the
steel does not possess a very definite yield point (see Fig. 12). The model of a
prestressed concrete section can be constructed as shown in Fig. 13. The shape
of the stress-strain diagram of the prestressing steel can suitably be approx-
imated in the manner indicated in Fig. 12. In the unloaded condition the un-
derside of the “concrete part’” of the model again coincides with the surface
level of the liquid. Prestressing is effected by shifting the part representing the
prestressing steel vertically upwards in relation to the liquid surface by such
an amount as corresponds to the tensile strain of the prestressing steel.

It is possible in principle to extend the analogy model to include non-
symmetrical sections and the case of biaxial bending, but these possibilities
will not be examined in the present article.

Fig. 11. Examples of
some models.
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Fig. 12. Model of a type of steel without a definite yield
point.

Fig. 13. Model of a prestressed concrete section.
a. unloaded and not yet prestressed;
b. loaded and prestressed.

-1 prestressing steel

concrete prestress
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3 Model for axially and eccentrically compressed reinforced
concrete members

If the external load N’ is applied within the plane through the underside of the
concrete part, the model described above will represent the behaviour of a
section, t.e., the length of a structural member will have no effect on this be-
haviour. However, if N’ is applied higher up, the position of the resultant of
the upward pressure will, in the horizontal direction, be affected by the rotation
angle ¢y of the model (see Fig. 14).

For the actual section this therefore corresponds to a displacement of the
position of the resultant in consequence of the curvature of the axis of the
member. This phenomenon plays a part in connection with buckling and can
be analysed as follows.

A structural member hinged at the ends and subjected to bending and direct
force (longitudinal force) will, under the influence of this loading, deflect in the
manner indicated in Fig. 15. According as this loading increases, the eccen-
tricity of the direct force in relation to the axis of the member will increase
(buckling). By appropriately choosing the height / in the model (see Fig. 14)
it is possible to obtain agreement between the displacement of the resultant in

the model and the increasing eccentricity in reality. ¢
o
Fig. 14. Introduction of the effect of the T J N

length of a structural member by means
of the height H in the model.

Fig. 15. Eccentrically compressed - L?N'
member.



Assuming a sinusoidal shape for the deflection of the member — see the
following article — we may provisionally (sce also 5b) write (see Fig. 15):

P =P0COS— « o 0 oo . e e e e e S ¢2))

For the critical section x = 0 we have:

d2y 2

d—xz = ————y() ﬁ . e e e e e e e e s e 4 s e e e e e e e (3)
Also:

dz_y E1— &2
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where & and & denote the strains in the extreme fibres and #; denotes the depth
of the section x = 0 (the section under consideration) in the direction of
bending. From equations (3) and (4) follows:

E1—E&2 Zcz

ht %Z

Do = (5)

Now the eccentricity of the load in the model should correspond to that
for x = 0 in reality; hence:

eo-+y0 = w(em~+ym)
or (see Fig. 14):

€0 — Ulm
and Yo=wm=pHtangn . . . . . .. ... (6)
Substitution of (5) into (6) gives:
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- 82-i:/AHtantpm.... N )
}lt 7Z2
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From Fig. 14 it follows that a = A tan ¢p. Furthermore &1—es = a—= so that:
n

d2y £1—é&2 &1 —é&2 e 1

daz he [uhm_ nou
This indicates — as already stated — that a rotation in the model corresponds to
a curvature in the actual member. Substituted into equation (7) this gives:

1 Eu/ lcz

— — — tan @, = uH tan @y
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This value of H can be taken as the starting point for constructing a model.
Because of the not entirely correct assumption contained in equation (2),
however, the test results obtained must subsequently be corrected, as is to be
discussed in 5b.

It is therefore possible, in the manner indicated above, to ascertain the
behaviour of a reinforced concrete column under the action of an external
axial or eccentric load. Not only can the maximum attainable value of N’
(= the ultimate load Ny,') be determined, but also the associated position of
the neutral axis, the strains & and e at the extreme fibres (see Figs. 5b and 5c¢),
and the deflection can be represented in a manner that can be visualized. And
this can, of course, be done for any other value of N’. With one and the same
model it is possible to investigate the behaviour of a series of columns having
the same cross-section but different values of the initial eccentricity of the load
and different lengths. The behaviour of steel columns and prestressed concrete
columns can also be investigated in similar fashion.

In principle, other boundary conditions, such as resilient (semi-rigid)
restraint, may be included in the investigation.

4 Model technique

The liquid used in conjunction with the models tested was water. The models
were made of a light and easily workable material, namely, foamed poly-
styrene. Although this material in itself absorbs little water, it was found to be
necessary to reduce this water absorption. Treatment of the exterior of the
material with wax had the desired effect — at any rate, so long as the wax had
not dried up. Is was also found that this treatment so reduced the surface
tension between the model material and the water that the effect thereof on the
behaviour of the model was entirely negligible.

In all the models the scale factor was y = 1. Initially a thickness n = 3.5 cm
was adopted for the “concrete part”, but this entailed a not quite acceptable
dimensional inaccuracy and deficient stiffness of this part where it tapers off to
zero thickness. For this reason a scale was adopted in which 2 cm corresponded
to 10/gg strain, so that » = 7 cm. No difficulties were encountered with this
scale.

The weight of a model was so low that it was quite a simple matter to adjust
the requisite centre of gravity and the weight to the correct position and correct
value respectively by applying a small weight which was always under water.

A “bridge”, likewise made of foamed polystyrene, was placed upon the
model. By means of this device the point of application of the external load
could be adjusted to the desired height and position. According to equation (8)
the height H associated with ¢ = 1 is:

12 3,5-1073 12
T2 7 20.000°
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Hence for a length /. = 3.00 m we have H ~ 4.5 cm, and for /, = 10.00 m we
have H ~ 50 cm. These dimensions can suitably be produced in a model. The
bridge was so balanced at its centre of gravity that it was possible to exert a
vertical upward force also when the model was displaced horizontally.

The load was applied by means of a lever along which a weight could be
shifted without having to touch the lever by hand, so that accurate adjustment
was possible. Figs. 16a and 16b give a general view of the test arrangement.

The desired quantities to be determined, such as the strains at the extreme
fibres and the position of the neutral axis, were measured by means of small
measuring rods. The imposed load was read directly from a scale extending
along the lever.

Ym €OS P, e, Cos ¢

5 Model errors

a. GCorrection of the load Ny’ (see Fig. 17).

If the model had an infinitely small thick-
ness (n), then @u— 0, cosgpy— 1 and
sin @m — 0. In that case:

The point 0 in the model corresponds to the
centroid of the actual section. For this section
equation (9) signifies that a direct force N’
occurs at a distance p = up, from the cen-
troid. The model would correctly represent
the prototype.

Since the model has a finite thickness n,
however, the rotation ¢, may acquire values
that are not negligible. Also, since the point of application s of the resultant
of the upward pressure is not located in the plane through the underside of
the concrete part, an additional moment N,’'¢y sin ¢, is found to occur.
Hence in this case:

Fig. 17. Correction of N,,".

XM = 0 Nyp'ey cos g + Np'ym cos gm =
_= Nm, COS (pf,np'm + Nm,qWL Sin ¢7n e e e e e e e e e (10)

For the actual section this signifies (apart from the small error N/ qm sin gp)
that it is loaded at a distance p = pupy, from the centroid by a direct force of
the magnitude Ny cos ¢y in the model — i.e., the force N’ read on the scale
affixed to the lever must be corrected with the relevant value of cos ®m. With

regard to the term Nu'gpm sin ¢p it can be stated that both ¢, and sin Pm are
small.
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b. Correction of the height H and the initial eccentricity ém
(or ¢g as the case may be).

As stated on page 9, the assumption embodied in equation (2) is not quite
correct. For x = 1/, [, we have y = ¢ and therefore M = N'e (see Fig. 15).
From equation (2), however, it also follows for the same section:

d%y 72 T _ o

R ER R
so that M would have to be zero. A better approximation, as is also being
adopted in the following article, page 20, can be obtained with (see Fig. 18):

9
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L le
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where i:ﬁgl and o = e+f.
The following expressions conform to those derived on pp. 20-21:
Jo (81—82) (Zc>2 ( 1 1\ (lc)z
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hy fie A,
— l
S _ = £2><f>....................(14)
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where & and e again represent the strains at the extreme fibres for x = 0,
and 5 and @ are functions of @ only — see Table I (page 21). Furthermore:

Do Ym

e (12a)
€0 Em

e e e e e e e e e e e e e e e e e e e 13
}lt }Zm ( a‘)
S Jm

A 14
}Zt }Zm ( a’)

From equations (12) and (12a) we obtain:

=lzr ) G
o (5 Tg) e\,
In this equation /, & and hn are known. For a certain load applied to the model,

et

1
9m, &1 and e can be measured. The value of (; + 6) can be calculated, and

then © can be determined by means of the above-mentioned table. The values of
1/ and 1/@ separately are then also known. The associated initial eccentricity
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¢o’ or ey’ can be determined by means of equations (13) and (13a). The value
em’ will not be equal to the value ¢, adjusted in the model. As a result of in-
troducing equation (11) the value of H, instead of conforming to equation (8),

becomes:

lcz 8u, 1
n2ﬁ2-7~;§...................(821)
As the value of @ was already known, it would also be possible to correct the

value of H.

’

Fig. 18. Eccentrically compressed member.
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Fig. 19. Correction of H and e,,.
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To summarise, it can be said that at the start cf the test the height / accord-
ing to equation (8) is available, the initial eccentricity being adjusted to a
value ey (or e). These quantities must subsequently be corrected with the
test results obtained. From Fig. 19 it is apparent that this degree of freedom is
indeed available. No change occurs in the state of equilibrium if i and ey
are replaced by H’ and e/
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