The behaviour of continuous beams in reinforced concrete

(Results of experimental and theoretical investigation)

Th. Monnier
I.B.B.C.

Summaxry
This paper describes both experimental and theoretical research

performed on continuous beams in reinforced concrete. A general survey
of the behaviour of that kind of structures is discussed at first. The
tests on two-span beams are fully described. An analysis-procedure is
taken into consideration next, where the influence of the shear force
can be taken into account. Finally, the calculated and measured results
are compared.
The investigation described leads to the conclusion, that the

shear-effect must be taken into account in order to get the good agree-

ment between measured and calculated data.
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area of tensile reinforcement

area of compressive reinforcement

total area of the stirrups crossed by an inclined crack

area of one stirrup

distance between the supports and the nearest point load
distance defined in Fig. V-1

cross sectional area of a concrete compressive diagonal
width of rectangular section

width of rectangular section or web thickness of flanged beam
vertical concrete cover on a bar of the tensile reinforcement

distance from extreme compressive fibre to centroid of tensile
reinforcement

distance from the center of a corner bar to the corner of the
cross-section
modulus of elasticity

modulus of elasticity of steel (reinforcement)

modulus of elasticity in the origin of the concrete stress-

strain diagram

bending stiffness

bending stiffness in the uncracked state
bending stiffness in the cracked state (= %%)

stiffness in the cracked state including the influence of shear
deflection

deflection at mid-span

permissible deflection according to the GBV 1962 (Dutch Code for
the concrete constructions)

increase of the deflection due to shear

modulus of shear

stiffness for shear deformation in the uncracked state
stiffness for shear deformation in the cracked state

distance from extreme compressive fibre to centroid of tensile
reinforcement

total depth of the cross-section

moment of inertia of an uncracked cross-section including the
quantity of steel

quality of the concrete (for K 300,0% = 300 kg/cm®)

reduction factor for the steel stress in the stirrups

= d' = distance from extreme compressive fibre to centréid of
compressive reinforcement
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th = x = depth of the neutral axis

kzh = z = lever arm

£ span length

li length of a beam element

Az crack distance

M bending moment

Mi average moment in a beam region i

Mu yield moment

M, moment in the spans (F%ig N%z moments at the points of loading)

Ms moment at the interior support

Muv = Mu for the reinforcement in the spans

Mus = Mu for the reinforcement at the interior support

Mr cracking moment

AM total bending moment less Mr

Na resultant steel tensile force

N; resultant steel compressive force

Né resultant concrete compressive force

n number of bars of the tensile reinforcement

n0 ratig of modulus of elasticity of steel to that of concrete
<= _a)

By

P point load

Q total live load on the continuous beam

Q, theoretical failure load (MS =M ;M = Muv)

qu theoretical load Q, by which Mv = Muv and Ms<< Mus

Qus theoretical load Q, by which Ms = Mus and Mv<< Muv

Qg service load (= Qu/y)

R reaction force

T ghear force

Ta tensile force in stirrups due to shear

Tb compressive force due to shear in a concrete diagonal

Tr shear force at Mr in the region of the inclined crack

t horizontal center to center distance of the stirrups

wbo section modulus of an uncracked cross-section including the
quantity of steel

w crack width

W permissible maximum crack width according to the GBV 1962

max
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depth of neutral axis

lever arm

diameter in mm of a bar of the reinforcement or stirrup
inclination of stirrups with respect to axis of beam or ratio a/4
angle between concrete compressive diagonal and axis of

beam

safety factor (= 1.8)

strain of tensile reinforcement

strain of compressive reinforcement

concrete compressive strain

max. concrete compressive strain at failure

(= 3.5% according to the GBV 1962)

ratio MS/Mv

measured average curvature or calculated curvature due to
bending

total curvature less the curvature at cracking moment
increase of the curvature due to shear

ratio MVl/MS

ratio Muv/Mus

Poisson's ratio

ratio Aut/Au

stress in tensile reinforcement

stress in compressive reinforcement

yield stress of tensile reinforcement and compressive rein-
forcement, respectively

tensile stress (in bending) of concrete

max. concrete compressive stress (= 0.6 d; according to the
GBV 1962)

concrete compressive stress determined on cubes

shearing stress

shearing stress at inclined cracking

shearing strain

percentage of tensile reinforcement (= 100 i% or 100 EAE)
0

?
percentage of compressive reinforcement (= 1%%%—)
A
. R . t
stirrup reinforcement ratio (= B;—;EE*E)
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1. Statically indeterminate structures in reinforced concrete

1.1 Introduction

In accordance with the principles of elementary limit-design there is
considerable freedom in distributing the reinforcement over the various
critical sections in a statically indeterminate reinforced concrete
structure. Starting from a desired collapse load, any reinforcement
arrangement can be chosen which will still just enable equilibrium to be
achieved for a given collapse mechanism.

However, reinforced concrete structures present the complication
that, with the procedure outlined above, it cannot be presupposed that an
acceptable structure with regard to service-load conditions will always
be obtained. Under service-load there are also certain requirements to be
fulfilled. The maximum crack width is not allowed to exceed certain
permissible values, and the same applies to the deflection. These re-
quirements restrict the considerable amount of freedom in the choice of
reinforcement arrangement that would exist on the basis of limit-design
alone.

The main-object of the investigation to be described here is to
determine these limiting factors more specifically. This paper contains a
survey of the research work done so far and presents the results obtained.

To begin with, the investigation concentrates on continuous beams
constructed of reinforced concrete. For these structures the limits
(e.go, C1 and Cz) will be determined within which the ratio of support
reinforcement to span reinforcement must remain in order to fulfil the
service-load requirements. With these limits and some supplementary rules
as given data 1t is a simple matter to design continuous beams by limit
design which -are acceptable also with regard to the service-ability.

The very simple case of a beam continuous over a number of supports
for instance (see Fig. 1), can be treated as follows. Basing oneself on
the statically determinate main system of the spans (i.e., assuming each
span to be independent and freely supported), the total quantity of rein-

cn®. The closing line of the

support/Mspan =C. If g
is situated between the above-mentioned limits Ci and Cz, then the bean

forcement required is calculated as Atot

bending moment diagram can now be so drawn that M

will also fulfil the service load requirements. In that Kase the quantity
of reinforcement to be installed over the supports is —7—§%§4 cmg, and
Atot. 2

the quantity to be installed in the mid-span regions is T+ L cm” .
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Fig. 1. Scheme of a continuous beam.
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In general, it will be possible to adapt the reinforcement rather more
closely to the moment diagram than has been indicated in the diagram in

Fig. 1. On the other hand sufficient bond length must be provided.

The investigation concerning the behaviour of statically indeterminate
reinforced concrete structures began with a study of the bending stiffness
of reinforced concrete. The moment-curvature (M-n) diagram was determined
in experimental research. The M-y diagram of reinforced concrete is
especially dealt with in a separate publication,%) Next, experimental work
was undertaken on continuous beams. Besides, a method of analysis was
programmed for performing the calculations by computer.

The purpose of this computer programme was to obtain a computational
aid whereby the behaviour of statically indeterminate structures could be
fully analysed. The advantages are obvious. The importance of various
factors affecting the results can thereby easily and quickly be in-

vestigated. Having regard to the object of the present investigation,

%)The moment-curvature relation of reinforced concrete,
Heron, vol.-17 (1970), no. 2
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namely, the determination of the limits referred to in the introduction,
it was virtually indispensable also to have such a computational aid at
one's disposal. This is because the said limits have to be determined by
fully analysing a certain number of cases.

In the present publication the behaviour of statically indeterminate
structures in general will first be discussed, and then the following
subjects will be considered:

- experimental research on two-span continuous beams;
- the computation programme and the analysis principles employed in it

(including the M-y diagram of reinforced concrete);

- comparison of the measured and the calculated results with regard to
the continuous beams.

The investigation has at present reached a point where the
calculations are being performed from which the limits to be established

can be inferred.

For a proper understanding of the behaviour of such reinforced concrete
structures it is of course necessary to know the flexural stiffness of
reinforced concrete. This property can be determined by measuring the re-
lation between bending moment and curvature (i.e., the M-u diagram) in
the region of constant bending moment of a beam subjected to a four-point
flexural loading test. These measurements showed that the moment-curvature
relation can be approximated very well by three straight lines. Fig. 2
gives a number of M-u diagrams for various percentages of tensile rein-
forcement. The first branch of the diagram relates to uncracked concrete.
At the moment Mr the effect of cracking is manifested. The stiffness then
decreases. In the M-u diagram the horizontal third branch is reached when
the yield stress develops in the tensile reinforcement.

The consequences of this with regard to the behaviour of, for example,
a continuous beam are evident. This is shown in Fig. 3. On the vertical
axis is plotted the load 2P, while the values of the moments M are plotted
in the horizontal direction. The two thinly drawn lines indicate the
elastic moments: the span moment on the left, the support moment on the

right. The thicker lines relate to the moments that actually occurred.
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Fig. 2. Some examples of Fig. 3. Resdistribution of,moments
M-%n diagrams. in a 2-span continuous beam.

With increasing load, the beam at first remains uncracked. There is
no reason why the distribution of‘the bending moments should deviate from
the elastic values: in the diagram the relevant lines do in fact coincide.
If the support moment is the first to reach the value Mr (the 'cracking
moment'), then the reduction of stiffness associated with the cracking re-
sults in a redistribution of the moments. With further load increase the
support moment increases less rapidly. To maintain the requisite equi-
librium, the moment in the span now becomes relatively larger. The crack-
ing in the mid-span region has a compensating effect ﬁpon this. Thereafter
the distribution of the moments depends entirely on the then existing
stiffness ratio between the region of the positive and the region of the
negative moments. In the diagram the yield moment is first attained over
the support. No further increase in the support moment can occur with
further load increase. A plastic hinge has developed. The beam sections in
the mid-span region must now alone cope with the required increase in the
moment. When the tensile reinforcement in the spans finally also begins to

yield, the collapse mechanism shown in Fig. 3 develops. The load cannot
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now be further increased; the beam collapses and fractureé where the
rotational capacity of a plastic hinge is reached (see Fig. 4).

Starting from that collapse mechanism, the structure can also be
analysed in accordance with the elementary limit design concepts. As will
be apparent from the experimental research that was conducted, it is not
at all necessary that the yield moments be simultaneous attained at the
critical sections. Yielding can quite permissibly occur somewhere in the
structure before there is any question of a "Mechanism" having developed.
In normal structures the plastic hinges are able to provide sufficient
rotational capacity for this. Hence, in general, in determining the
ultimate strength, it is permissible to base oneself on a distribution of
forces for which the requisite equilibrium is possible. For reinforced
concrete continuous beams this means that the ratio of span reinforcement
to support reinforcement can be arbitrarily chosen; this choice will not
impair the safety of the structure in question.

The reinforced concrete structure must, however, also fulfil the
serviceability-conditions: maximum crack width and deflection. These two
aspects undoubtedly constitute a restriction of the great measure of
freedom in the distribution of reinforcement that the limit design method
in itself affords. As said before little is known, however, concerning

the extent of that restriction.
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2. Experimental investigation of two span continuous beams

2.1 General information on the test beams

The beams which were investigated had an overall length of 420 cm and
were tested as continuous beams on three supports, the two spans being
each 200 cm in length. The cross-sectional dimensions were b = 15 cm and
ht = 26 cm. The effective depth both for the top and for the bottom rein-
forcement was h = 23.6 cm. In all the test beams the longitudinal rein-
forcement consisted of 12 mm diameter deformed bars (see Fig. 5) of steel
grade QR 40 (Gae min.
bars are plotted in Fig. 6.

= 4000 kg/an). The stress-strain diagrams for these

In the cross-section of each beam there were always two and three
longitudinal bars as tensile reinforcement and compressive reinforcement
respectively, or vice versa. The longitudinal reinforcement remained
constant over the entire length of the beam. Details of the reinforcement
for each beam (the beams are marked Bi, Bz , Bs and Bs) are given in the
table accompanying the cross-section shown in Fig. 7.

The beams were provided with stirrups of 8 mm diameter, consisting
of the same grade of steel as the longitudinal reinforcement. These
stirrups were made by welding four bars together (see Fig. 7) and served
also for accurately fixing the longitudinal bars in the formwork. The
stirrup reinforcement was the same in all the test beams, as shown in
Fig. 8.

The strength of the concrete was of the order of magnitude of
300 kg/cmz. In Table 1 these strengths, together with the other properties
of the concrete, are given for cach beam separately. The data of 20 cm

cubes will be used as cube strength(j% of the concrete.

2.2 Description of the investigation

The beams described in the foregoing were tested as two-span continuous
beams, i.e., on three supports, the spans being each 200 cm in length.
The loading consisted of two point loads applied to each span. In all cases
these loads were spaced at 50 cm centre-to-centre and were disposed sym-
metrically with respect to mid-span. The test arrangements are shown
schematically in Fig. 9.

The beams B1, Bz and Bz were loaded with two equal loads P applied to
each span. The bending moment diagram for this case is presented in Pig.

9a. In the case of the beam Bz, however, one of the two forces acting on
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Fig. 6. Stress-strain diagram of the bar @ 12 mm.
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stirrups (8 -15l

The stirrup reinforcement.

calculation stirrup reinforcement
]max. shear force From Appendix V:
. T
beamn Tpat ultimate lever arm 0. = u in%a
in kg (from table 2) z , z t b.z.0
no. e m - ae
end middle inoen end middle
support support Isupport support
By 2839 5978 21.9, 21.6 1.99 4.24
Bz, Ba 4216 6322 21.6, 21.9 3.04 4.51
B3 3619 7027 21.6, 21.9 2.62 5.00
. 8-15 | #8-11.7
All b vided with: ¢
eams pro = 4.49| = 5.75
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Table 1. Strength properties of the concrete.

1 2 3 4 5 6 7
beam cube compressive prism |splitting {%:iuiii)'o?oigi:f bulk
number [strength |strength strength |strength streigth bicity density

kg/cof kg/cm® kg/cn® | kg/en® kg/cnf kg/cn’® |kg/dm®

B 310/327 345 267 28.7 45.1 3.20x10° 2.30

B2 313/325 324 299 26.5 39.5 3.19x10° 2.31

Bs 308/3%48 339 266 27.9\ 44 .1 3.35%10° 2,32

Ba 330/383 373 - 29.8 47.8  [3.37x10° 2.33
average | 315/346 345 277 28,2 44 .1 3.28 10° 2.32

1) measured on four 20 cm cubes, pressed between 3 mm cardboard,

respectively four 15 cm cubes, pressed without cardboard
2) pressed between 2 steel plates 10XxI0x3 cm
3) 1 prism 10x10x30 cm
4) average of two 15 cm cubes

5) average of three 10X10x30 cm prisms, loaded according the 3-point
bending test with a span length of 20 cm

6) two 10X10X30 cm prisms

concrete composition:
. Portland cement A Enci 325 kg/m’
. water/cement ratio 0.57

. aggregate/cement ratio
(dry weight) 6.0

. hardened by 20°C and 65% R.H.
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Qa :1/2 QT____ a TE,]E:1/Z_Q__ (Q‘a and Q, are only
v v applied to beam Bs
as separate loads,

see fig. 11)

Loading system of
B1, B and Bg.

- ST
WQ:OD?SOW

My1=0122Q (kgm)

Loading system
of Bs.

Ms=-0183Q

Pl 12905 905P:  [P=01280Q
P 03720 |

\LLLUlL )/ LLLUJ)/ Fig. 9b.

Mv’| H |\/IV2=0.096Q (kgm)

Fig. 9. Loading systems and the actual areas of moment diagrams.



Am.DS = mzv e weeq IOJ mml_‘nm = m.zd

B
n

Amﬁz = mzv g pur ¥ Weoq IOF MWWIW = mﬁ@
n

An. A 22L°0 _ an,.

("W = "W) W wesq IoJ o = Ay

$ST PTOTL 03 IBGS JUSWOOIOJUTSI STTSUS] 8YF YOTUM

1® pEOT oy} Weyj ‘weaq oUj JO yYjIuel STOUYM oy} JUOT® 3JUBLSUOD ST (1) sseuzyTas oyl Sutunssy

eg weeq (¢ + ™va) "M v65°0 = ™
AT xTpueddy oes "AN.PSV ueds oy pue Amzv jxzoddns 8yj3 I9A0 FUIPTOTA SnNOSUBLTNUTS
g pue o ¢ g wesq (¢ + ™e) M L99ro = M
_ :( ﬁbzv ueds 9y4 UT pue Amzv jxoddns oy3 xea0 FUTPTOTL SNOSUBFTAWTS (
g
© wdy G612 = W :zlge ._ “ W u
! wsy LgL¢ = ss $ZL@¢ FUSWEDIOFUTSL STTSUSY IO0F JUSWOW proTL (
T
1L6°0 1czot|ecsolL| 006° 1L |(az=b =% ="d ‘pepeor weds swo) | GGL*L |B 60£°0|B 9LL°0
896°0 8L6LL 9Lolz| 00G°1L L9Lg 80lLe zlge 1 zige | 069°0 |b zzL°0|® 9LL°0| &
L¥6°0 226l L6gle| 00G° L L9Lg 80lLe zLgs zlgz | G2G°0 |b 960°0|d ¢8L°0f &
896°0 8L61L1L 9L0Lg| 00G°L L9Le 80l¢ zLge zLge 069°0 |b 2z2L°0|® 9LL°0| =&
¢66°0 6LGLL|YZ9LL| 8L9°0 6212 L zlLge ZLge | 069°0 |B® 22L°0|® 9lL°0| ™
l.ﬂ.ﬁhcwn w sn, A M@m _t AT sn ueds |gxoddns .lm.E =° TA, s
m.pd >.p@ §§) .Dd .pd >.DS| Y I i , §S X 0 N
weaq
(%) peol PIoTA (W3) PEOT OATT X0 3Tq® JUSWOIIOJUTSL (wSs) squsmowr OT1sBIS
(2 pue -8INTTEF TEBOT}OI08US (1 ~-TTeA® wﬁsmaoa pToTL ,

© sweeq 3583 ey} Jo sorgasdoxd yisusxls °g OTABIL




- 17 -

one span, namely, the force applied nearest the central support, was
about 2.9 times as large as.the other. The elastic distribution of the
bending moment thus obtained comprised a zone of constant moment between
the two loads on a span (see Fig. 9b).

For all the test beams the elastic bending moments at the significant
sections associated with the loading case concerned are given in Table 2.
The theoretical analysis is presented in Appendix I. The same table also
indicates the positioning of the reinforcement and the magnitude of the
yield moments associated with it. The method of calculating the yield mo-
ments is set forth in Appendix IT. All the moments indicated are values
caused by external loading or, alternatively, available for resisting
external loading. In all cases the investigation was based on the beam
inclusive of the bending moments due to dead weight (see Fig. 10).

In beam Bi the support tensile reinforcement consists of three 12 mm
bars and the tensile reinforcement in the spans of two 12 mm bars, this
arrangement being adopted as the best possible adaptation of the rein-
forcement to the elastic distribution of the moments (see Table 2). As
already stated, in all the beams the'span reinforcement and the support
reinforcement was continued throughout the length of the beam. In the
beams Bz, Bs and Bs the reinforcement was reversed in relation to B : the
support reinforcement consisted of two 12 mm bars and the span reinforce-
ment of three 12 mm bars. In beam Bz the reinforcement was therefore Jjust
reversed in relation to the magnitude of the elastic moments. In Bz there
was relatively even less support reinforcement, inasmuch as the two forces
on a span of this beam were not equal. Finally, in so far as the position
and magnitude of the loading were concerned, beam Bs was in the same
circumstances as beam Bz . The loading applied to the beams Bi, Bz and Bs
was increased by increments, in the usual way, until failure occurred; in
the case of Bsa the loading was, in addition, subjected to alternations at
each increment.

These alternations, which were commenced after the cracking moment
had been reached, proceeded in accordance with a "shake-down analysis"
pattern:

Suppose that at the load increment under consideration a total load @
was acting on the beam. First this total load was applied (i.e., to both
gpans) and then removed again. Next, half the load Q was placed on one of

the spans and removed. Then the other span was loaded with % Q and un-
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10 200 200 10

Ms=-47kgm (oM
- ~ 1/8 93.6 22 =47 kgm

=~ ~
~

\\
P b

IR v P

Fig. 10. The test beam including the above mentioned moments
caused by the dead weight (= 93.6 kg/m') of the beam
has always been taken as zero point of the measure-
ments. -

The weight of the loading equipment was, however,
taken into account as applied loading.
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loaded. Finally, the total load Q was again applied to the whole beam.
One cycle of alternations is shown schematically in Fig. 11.

This cycle was repeated during the testing of the beam until, at the
load increment in question, a steady state was attained. This steady state
was recognisable by the fact that the measured reactions at the supports
due to full load Q were found to have the same value after the application
of a particular cycle of load alternatiohs as they had before such ap~-
plication. During the cycles, precautions were taken to prevent lifting of

the end support of the non-loaded span.

For measuring the reactions, load cells were installed under the
three supports of all the test beams. From these observations the actually
occurring distribution of the bending moments had, inter alia, to be
calculated. The said load cells were disposed on an assembly of steel
plates and adjusting screws, whereby the height of the bearings cpulq.pe
accurately adjusted. For this purpose, too,.dial gauges were instéile&,
by means of which, with the aid of a stand, any changes in the level of
the supports in relation to the (immovable) floor of the testing laborato-
ry were measured. During the execution of the test these dispiacements
were always corrected; it was thus ensured that the supports could not
undergo any displacement in relation to each other. Fig. 12 shows the

arrangements at an end support.

2.2.1 Observations made

In the zero position (twice) and furthermore after the application of each
load increment the following data were measured and recorded:

- The height of the bearings in relation to the floor of the testing
laboratory. If this dimension, after the load had been increased, was
found to have changed to such an extent that the three supports were no
longer all at the same level, corrections to restore this were applied.
For this reason the loads were always increased in small increments.

- The magnitude of the bearing reactions. In the zero position and
during the first few load increments the heights of the bearings were so
adjusted that the magnitude of the reactions corresponded to the elastic
(calculatéd) values. Thus no secondary stresses were produced in the
beams, despite the fact that they were not "ideal" beams in the sense of

being absolutely straight.
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- The mid-span deflections in both spans. These deflections were
measured with the aid of a levelling instrument.

- The tensile and compressive strains at the level of the tensile and
compressive reinforcement respectively, i.e., 2.4 cm from the bottom or
from the top of the beam. These measurements were performed with a
demountable strain gauge applied to both sides of each beam and along the
entire length thereof; the gauge length was 25 cm.

Also, over a considerable proportion of the length the beams were
provided, on one side, with measuring points for a smaller demountable
strain gauge, the gauge length in this case being 10 cm. These measure-
ments were not performed after each load increment had been applied.

Fig. 13 shows the location of the measuring positions on the beams.

In the case of beam Bs all the above-mentioned observations were
obtained when a steady-state condition had been attained after the load
alternations had been applied. This was done both with the beam fully
loaded and with loading on one span only. Before alternation was started,
the bearing reactions, the deflection and the strain, the latter measured
on a 25 cm gauge length only, were determined.

The measurements on each beam took six working days to carry out.

In the first place, the following data are presented:

- the measured distribution of the moments in the beams; the maximum

span moment and the support moment are given;

- the mid-span deflections.
The results of the measurements relating to these quantities have been
plotted against the corresponding total load Q@ on the beam. For the beams
I& to B4 they are successively presented in Figs. 14, 16, 18 and 20. The
calculation of the moment distribution from the bearing reactions is given
in Appendix III.
A different method of plotting the support moments and maximum moments in
the spans against the corresponding loads has also been employed. In
Figs. 25 to 29 (at the end of this chaptef) the moments calculated from
£he bearing reactions and divided by the calculated yield moment in the
region concerned have been plotted against the total load acting on the
beam divided by the calculated failure load. The calculation of the

failure load is presented in Appendix IV,
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Fig. 15. Beam Bi, max. crackwidth and crackpattern (test results).
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Fig. 17. Beam Bz, max. crackwidth and crackpattern (test results).
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- The maximum crack widths in the mid-span regions and over the interior
support (these being the regions where positive and negative moments
occur respectively) were determined by extrapolation of the strain
measured (on a 10 cm gauge length) at the level reinforcement to the
extreme tensile fibre. Whenever more than one crack was present
within a 10 cm gauge length, the measured strain was distributed
over the cracks in proportion to their lengths. Figs. 15, 17, 19 and
21 give the maximum crack widths and the crack patterns of the beams
Bt to Bg.

In Table 3 it is indicated at what load and which part of the beam a
strain corresponding to the yielding of the reinforcement was mea-
sured. For comparison, the calculated values already stated in

Table 1 have been included in Table 3, as have also the values of
the load at which the occurrence of yielding of the reinforcement

can be inferred from the moment distribution that was developed.

Figs. 22 and 23 are views of beam B4 after undergoing the test.
Finally, Fig. 24 is a general view of beam Bs being tested. Also shown in
the photograph are the beams Bl, B2 and B5 already tested (in the fore-
ground, partly visible, is one of the beams on which the M-u diagram was
measured by means of a four-point loading test).

A1l the measured curvatures along the lengths of the beams are given
in the camparison of the calculated and the measured results, Chapter 4,
Figs. 42 to 47.

2.% Discussion of the results of the measurements

The behaviour of the beams during testing is clearly apparent from Figs.
14, 16, 18 and 20.

In the case of beam B1 (Fig. 14) the actual distribution of the

moments, also in the cracked beam, is found to be in agreement with the
calculated elastic values. The calculated collapse load was somewhat
exceeded. The bending moment at which the span reinforcement reached the
yield stress differs very little from the calculated value. It is particu-
larly notable that in the diagram indicating the actual support moment the
yielding of the reinforcement produced no conspicuous point. The reinforce-

ment in question reached the yield stress a fairly short time after
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yielding of the mid-span reinforcement occurred, however. Fig. 15 gives
the data relating to cracking. In Figs. 14 and 15 the permissible loading
is also indicated, this being the calculated collapse load Qu divided by
a factor 1.8. Purthermore the permissible deflection and maximum per-

\i

missible crack width ’ in accordance with the Netherlands code of practice
for reinforced concrete (GBV-1962) are indicated in the diagrams concerned.
For the beam B: under discussion, in which the reinforcement had been in-
stalled in conformity with the elastic bending moments, the requirements

of the code of practice present no problem at all.

As appears from Fig. 16, in beam Bg considerable redistribution of
the moments occurred after the cracks had formed. Accordingly, in conse-
quence of this redistribution, the yielding of the tensile reinforcement
over the support occurred at a substantially higher load than that
calculated according to the elastic theory. The bending moment at which
yielding of the reinforcement began was in this case also higher than the
calculated yield moment for the section concerned. The calculated collapse
load was likewise exceeded. As regards deflection, under the permissible
loading the beam Bp was found to remain well below the maximum permissible
value. The maximum permissible crack width in accordance with the
Netherlands code of practice was Jjust attained under the permissible
loading (see Fig. 17). This beam therefore fulfils all requirements, which

is a favourable result, considering that in this beam 42% of the support

e

YA
gt

54

reinforcement was transferred to the mid-span region.

In contrast with the above-mentioned beams, beam Bz does not conform
to the requirements of the code as regards the maximum permissible crack
width. As Fig. 19 shows, under the permissible loading a maximum crack
width (wmax> of 0.4 mm was attained. In this beam Bz 50% of the support

%%%)

able redistribution of the moments in consequence of cracking, as is

o

reinforcement was transferred to the spans. There was in fact consider-

apparent from Fig. 18. The deflection under the permissible loading still

£
w

1

Namely: fmax = 555 0.85 { = 0.34 cm

and w = 0.25 mm
max

LA
Ay

i.e., of a beam with the same failure load as the beam under consider-
ation.
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Fig. 19. Beam Bz, max. crackwidth and crackpattern (test results).
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conforms to the code requirements, however.

In the case of beam Bs (see Fig. 20) the moments that occurred were
of approximately the same values as those found to occur in beam Bz .
Evidently the effect of applying the loading in accordance with the shake=
down analysis is of little significance with regard to the moment re-
distribution due to cracking. The deflection is thereby substantially
increased, although it does not exceed the permissible value under the
permissible loading according to the code GBV. The principal difference
between the beams Bs and Bz is in the greatly increased crack width - due
to the load alternations - over the interior support (Fig. 21). In the
case of beam By this width is nearly twice as large (namely, Woax = 0.44
mm) as the maximum crack width measured in beam Bz under the permissible
loading. From Fig. 20 it also appears that, on an average, about 20 of
the load repetition cycles described (see also Fig. 11) were needed in
order to attain a steady-state condition. The number of cycles necessary
to attain a steady-state at each load increment is written in the small
circles in Fig. 20. At the last load increment, alternate yielding
occurred which, after 14 cycles, resulted in failure. The bending moment
at which the tensile reinforcement over the support began to yield is
very close to the calculated value of that moment. Because of the fairly
considerable redistribution of the moments, yielding of the steel occurs
at a higher value of the loading than that calculated according to the
elastic theory. The loading at which the beam By failed, in a manner
resembling shear failure, after alternate yielding of the reinforcement,
was higher than the failure load values calculated for the beams B: and
Bs . The measured failure load of Bs , however, remained about 10% below

the highest value of the loading to which beam Bz was subjected.

From the values stated in Table 3 there is seen to be some rather
substantial difference in the loads at which, according to the measured
strains and the measured distribution of the moments, yielding of the
tensile reinforcement over the central support must have taken place. The
most probable cause of the difference must simply be sought in the fact
that, in the circumstances, the strain measured on a gauge length of 10 cm
is not a reliable criterion for the average steel strain over that
distance. Shear-like effects and bond slip play an important part in this

context.
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Fig. 22. Beam By after failure.

Fig. 23. Interior support section of beam Bz after failure.
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The following conclusions can be drawn from the experimental investigation,

within the scope of the research-work performed here:

(a) If the quantities of reinforcement in a continuous beam are adapted
to the magnitude of the elastic moments, then the actual distribution
of the bending moments will be as in a homogeneous elastic beam.

(b) With the above-mentioned method of reinforcement of the beam under
consideration it is possible amply to fulfil the requirements of the
Netherlands code of practice with regard to deflection and maximum
crack width.

(¢) As a result of transferring reinforcement from the central support
to the spans there occurs a redistribution of the moments in conse-~
quence of cracking. The actual support moment decreases and the
actual span moments increase in relation to the respective values
calculated according to the elastic theory.

(d) If 40% of the support reinforcement is transferred to the mid-span
regions, then the largest measured crack width of 0,25 mm will still
fulfil the requirements laid down in the Netherlands code of practice.

(e) As a result of alternate loading of a continuous beam the crack width
in the region where reinforcement has been removed is greatly in-
creased.

(f) The load alternations have little effect on the redistribution of
the moments.

(g) With such loading in accordance with the shake-down analysis it was
found that, as a result of alternate yielding, the rotational capaci~
ty of the first plastic hinge formed was reached sooner, with the
result that the collapse load was lower (but not below the theoretical

failure load).

2.5 Extra investigation

Tests were carried out, as preliminary research, to determine the M-u
diagrams of the sections of the B-~beams, discussed before.
The purpose of this was to be able to find the best interpretation for
the experimental results of the continuous B-beams.

The beams concerned were tested according to the well-known 4-point
loading test. The cross-section, the steel - and concrete properties were
of course the same as they were for the continuous beams.

Figs. 30 and 31 show the measured M-u diagrams, while Fig. 32 gives a
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survey of one of the test beams after yielding.
The measured M-y diagrams were in good agreement with the results
of other tests concerning the moment-curvature relation of reinforced

concrete.



2500 | : i

| My =2155kgm ; | /_7
2000 /¢ A

Mc in 4
kgm

o | A | ,
Tmoo //// / |
N/ '

7/ 7 Y

|
G0 5 10 15 20 25' 35 45 55

Fig. 30 Beam A, + measured values
(wo = 0.64%. wy = 0.96%) o yieldpoint. only the load was measured
3500 |
| My=3187kgm
3000 }?&” =
'/
/\(EI)g emp.
/
2500
Mc in
kgm /
T 2000 A —
1500 7
1000 //
| Fig. 31 Beam A2
(w, = 0.96%,
500 0 7
/ wh = 0.64%)
0‘6 5 10 15 20 25 30

e win 10°Vm



SurpreTd x93 3%

g

Y wssg

44

3T

q




_45_

3. The analysis of statically indeterminate reinforced concrete structures

As has been explained in the introduction, an analysis procedure has been
programmed with the object of, as it were, being able to carry out model
research with the aid of the computer. It is in fact essential to be able
to calculate the actual moment distribution, the deflection and the crack
widths satisfactorily. In this approach to the problem it is of course
necessary, among other things, to enable the change in bending stiffness,
for instance when the concrete cracks, to be taken into account in the
calculation. This chapter describes the analysis procedure that has been
programmed .

The programme is suitable for the analysis of plane structures
consisting of bar-type members which are not affected by stability problems
The second-order effects are not taken into account in the calculations.
Besides the analysis of the force distribution and deformations due to a
once~-only load increasing from zero to collapse load (using a M-% diagram
as drawn in Fig. 33%), the effect of load alternations can also be
determined by means of the available programme. For that purpose the M-y
diagram as represented in Fig. 34 is utilised.eg Calculations in accord-
ance with shake-down analysis are therefore also possible. Furthermore,
applied deformations as well as loads can be introduced into the calcul-

ations.

For the purpose of carrying out the analysis the structure to be analysed
is subdivided into beam elements by means of joints (nodes). Two adjacent
joints should be chosen so close together that, relating to an element's
stiffness with regard to a load, the average moment of the element in
question can be adopted. In calculations carried out so far the length of

the elements were about equal to the depth of the beam concerned.
The loading is applied in the form of centrated forces at the joints.

For the time being shear force effects will be neglected. The calcul-

ation procedure is therefore as follows.

W)The latter is discussed in a separate paper: The moment-curvature
relation of reinforced concrete; Heron, vol. 17 (1970), no. 2.
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A load which is larger than the estimated failure load is applied to the
structure. At this stage of the analysis no cracking has as yet occurred
anywhere in the structure. In all its elements the flexural stiffness is
(EI)O, corresponding to the first branch of the M- diagram for reinforced
concrete (see Fig. 33). It is now calculated (with a normal, linear calcul-
ation) at what percentage of the applied loading the average moment in one
of the beam elements is the first to attain the cracking moment Mr' At

that loading Ap1 are calculated: the moments at the ends of the elements
AMi,‘l’
curvature A%i,1 in the elements. The relevant, cracked element of the

the deflections Af, . at the joints (nodes) and the average
9

structure has from now on the bending stiffness (EI)g, corresponding to

the second branch of the M-y diagram. Then the full loading is again

applied, to this structure in which the one 'exceptional' beam element

has the stiffness <EI)g and the others have the stiffness (EI)O. It is

now investigated at which percentage Ap2 of the total loading the moment

of the subsequent element reaches its limit-moment now valid, i.e.,

T

moment Mu - AIVI:.L91 develops in that element for which the stiffness is

(EI) . The total moments AM, . + AM,
g 1y 1,

M- AMi 40 OT should that occur earlier, until the limiting ‘yield’
9

and deformations Af, + Af,
1 2 i,1 i,2
etc., associated with the load Ap1 + Apz now acting upon the structure
are then calculated.

The calculations are continued in this way. In the element where the
average moment attains the cracking moment, the stiffness is in each case
altered from (EI)O to (EI) (in general the limit moment then valid =

n

Mr - AMi .)o The magnitude of the load increments depends on whether
=1

the stiffness has to be modified somewhere; in general, the increments

are not equal. If the yield moment develops at any particular point, a
complete hinge is applied at the joint concerned. The calculation is
stopped when a collapse mechanism develops in the structure.

As shown the limit-values for the moments, at which the flexural
stiffness of the elements has to be changed, are each time corrected
because of the moments that occur with regard to foregoing load in-
crements. This is simply the consequence of the fact that the calculations
for each load increment are applied for a new, unloaded structure which
has some changed stiffness properties with regard to the last one. The
results obtained for each load increment can then be added together to
determine the actual moments etc. in a certain stage of loading of the

structure.
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In the computer programme the calculation is therefore performed
linearly in steps. This procedure is not an iteration method, since only
one linear calculation is performed for each load increment. The linear
calculations for each load interval, are carried out in accordance with
the displacement method, in which the displacement components of the
joints (nodes) between the beam elements are therefore the unknowns in a
set of equations.

Since the M-y diagram of reinforced concrete can be approximated
quite well by (three) straight lines, this calculation procedure is, in
principle, virtually an "exact" one. With the programme a non-linear
behaviour pattern can, however, also be fairly closely approximated. For
example, a curved M-u diagram can, after all, be represented by a larger

number of short straight portions.

From a comparison between the calculated results and the measured
results, which will be discussed in chapter 4, it was concluded that the
shear deformation of the cracked parts of the beams had wrongly been
neglected, From that moment on, the effect of this was therefore taken
into account. On the one hand this ig done in the form of a correction
applied to the bending stiffness adopted to the M-u diagram measured in
a region of constant moment. On the other hand a correction is applied to

the calculated deflection.

In the case where the shear force effect is taken into account the
calculation procedure is in fact the same as discussed before.

With regard to the subdivision of the structure also the same rules
were followed as given earlier. Normally in this cases, however, the
elements which are directly beside an interior support, or elsewhere in
parts where the shear force excercises relatively the greatest effect,
are in turn divided into two equal parts.

The flexural stiffness is directly corrected for shear effect in
accordance with the rules discussed in the next part of this chapter
(%3.2.2). The correction factor concerned appears to be dependent of the
actual shear force/moment ratio in the cracked member. Therefore, that
ratio must be estimated. Before accepting the calculated moment distribution
as correct, it is first investigated what the stiffness would have to be
for the shear force/moment ratio occurring in the cracked element. If

this value differs more than 5% from the bending stiffness introduced
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into the calculation, then the new stiffness value is introduced, and the
calculation of moments is carried out again. On the other hand, if it
differs by less than 5%, then it is investigated in accordance with the
normal calculation procedure, at what loading in the next element the
average moment becomes equal to the cracking moment etc.

The deflection calculated from the moment distribution is likewise
corrected for the effect of shear force; the magnitude of this effect is
determined by means of a calculation as set forth in Fig. 35. In the
condition shown in that diagram all but two of the members have cracked.

The deflection Aft due to shear force thus calculated is (for each
joint) added to the deflec¢tion f of the joint in guestion, calculated
from the moment distribution. The total value f +Aft is introduced as
the deflection at the points concerned.

The flow diagram of the computer programme is given on page 51,

For the sake of completeness it will first be explained how the flexural
stiffness of reinforced concrete is incorporated into the computer
programme .

Furthermore, it will be described which shear stiffness is taken into
account and how the correction of the shear-effect is developed with
regard to the flexural stiffness.

Finally; the manner in which the maximum crack width is calculated
will be established also.
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3.2.1 The M-u diagram of reinforced concrete

As mentioned before this diagram can be approximated by straight lines as
represented in Fig. 33,

Prior to the occurrence of cracking, the bending stiffness is

(EI)0 =B - Lo
where
Eéo = modulus of elasticity of concrete (tangent in the origin of
the stress-strain diagrams), which can be found from the cube
strength as B = (% a + 200) 10° kg/cn®;
Ibo = moment of inertia of the section including the reinforcement.

When the cracking moment Mr is reached, the stiffness changes. The

cracking moment is approximately determined by

Mr= g . wbo,

b
where
Gb = tensile strength of the concrete and can be taken as
g 2,
Op = 1.2 (20 oL+ 10) kg/em® ;
Wbo = section modulus, the reinforcement included.

The results obtained from the above mentioned formulas appear to be
in good agreement with reality.
For the stiffness (EI)g in the cracked state the following empirical

expression has been deduced for normal cases:
(EI)g = (-2.5 “’i +13.9 0, - 1.1) bh®  10° kgen®

where wo is the percentage of tensile reinforcement, b is the width, and
h is the effective depth of the section. The above relation between (EI)g
and uz is represented by the thickly drawn curve in Fig. 36. The points
plotted in that diagram are the measured values. In the computation pro-
gramme the bending stiffness is calculated with this formula. (The given
curve can be approximated by a straight line for which

(EI)g -0 . bh®
thin in Fig. 36.)

10* kgcm2 = 0.48 Ea4u .bh® kgcnﬁ; this line is drawn

The horizontal third branch of the M- diagram occurs at the yield
moment. This moment is found to be in reasonable good agreement with the
failure moment calculated according to the ultimate-load method, see

Appendix IT. The analysis is accordingly based on a parabolic stress-



_54_

/—s’(irrups

Shear force region.

Fig. 37.



..55..

strain diagram for concrete with:
[ 1,
- axtreme concrete stress Gbu = 0.6 o,
- gtrain of concrete at failure Egu = 3.5%, as laid down in the

Netherlands code of practice (GBV '62)

Some M-n diagrams for various reinforcement percentages were already

presdnted in Fig. 2 by way of illustration.

3.2.b Effect of shear force

The ghear strain of uncracked concrete is taken as equal to that of a
homogeneous elastic material and is given by the well-known formula:

T
¢ = G.B

where ¢ is the shearing strain (angular displacement due to shear force),
T is the shear force, qnd G is the shear modulus (or modulus of rigidity),
which is equal to ——ZT—:_;7 The shear deformation of the uncracked
concrete is normally neglected.

When the concrete has cracked, the shear strain of course takes on
a different value. It is assumed that the shear force is then resisted
by compression in a concrete diagonal and tension in the stirrups. This
approximation of the pattern of forces in a shear region has long been
known as the lattice analogy (see Fig. 37). The theory concerned is
presented in Appendix V. The derivation of the formulas is given fairly
general in the appendix. Nevertheless the assumption that the compression
diagonals of the lattice are inclined at 450 is generally a sufficiently
accurate one. Furthermore, vertical stirrups are used in the beams
considered in this paper. On substitution those two values, the general
formulas are greatly simplified. The formula for the shear stiffness in

the cracked state becomes then:

E . w
t
(GB) = —2 oy, Zy
g 4no wy k
where
Ea = modulus of elasticity-of steel;

wt quantity of stirrup reinforcement expressed as a fraction of

the concrete area concerned.

A . .
W = t _ cross-sectional area of a stirrup |
t  b.t beam-width x stirrup-spacing ’

z = lever arm;
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E
n = E%— = ratio of moduli of elasticity;
° bo
Tr
k =1 - T Tr = the shear force in the part of the beam, when the

cracking moment is reached there and

T = the actual shear force.
The ratio k is taken into account because tests have shown that the
actual tensile stress in stirrups is lower than may be expected

theoretically , as mentioned in Appendix V.

Furthermore, from considerations of equilibrium (also outlined in
Appendix V) it appears that, as a result of the shear force, the
compressive and the tensile force associated with the bending moment are
respectively decreased and increased by an amount equal to % T. This
amount is also related to vertical stirrups and compression diagonals at
an inclination of 450.

These changes of the horizontal forces of course also have conse-
quences with regard to the curvature that accurs. The increase in curvature
is:
u=_T_{_1__ 1 }

t 2.z L AE b.x.E}
where A is the cross-sectional area of the tensile reinforcement and

x (= kxh) is the depth of the compressive zone of the concrete. On further

working this out we obtain:

W o= T 1 1
t = 2k_ Dbh® | wE k_.E!
z a x " bo
In many cases encountered in actual practice the product w.Ea in the
above expression has the following value:

w.B, = 0.007 x 2.1 x 10° ~ 0.15 x 10°

and :
] _ - S . 5 o~ 2
k B =0.3 x3 x10 1 x 10 ( » ~ 300 kg/cm® )
The share of the steel in the change of curvature is therefore
-5 -5
w1E ~ 7 x 10 and that of the concrete is EnlﬁT— ~ 10 .
‘Ta x" bo

As a result of neglecting the latter, an approximately 15% greater in-

crease in curvature is therefore found. This difference can be compensated
by substitutingl%‘= 1 in the denominator of the expression for Mt.
Actually this means that the increase in curvature due to shear force is

taken as equal to the increase in the steel strain divided by the
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effective depth of the beam:
T
o= 2
2 wE bn
a
Taking account of this shear force effect, the flexural stiffness of
the cracked section becomes:
AM (BI1)
Ay Bw - 8051 ((EI) - (EI)>
A+ Ay Ay 1 +§ \ gd g
t (1 0
* An
In these and the following formulas AM, AT and Au are the increases of moment,

shear force and curvature above the moment where (EI)g has to be changed.

The factor § is:

‘. A_;i ) AT (EI)g
A 54 E Lbh? AN
a
or:
£ = __(Ezg._ A
s °AM
2w.B_ . b

As an approximation the following expression may be adopted:
3
. 0.48 Ea.w.bh AT

E =~ < in

0,240
2Ea.w.bh2

3.2.3%. Qrgcg yigtg

The maximum crack width can be calculated with the formulas given in
the Netherlands Code of Practice for Reinforced Concrete (GBV). The
validity of these formulas in a region of constant bending moment has
recently been confirmed by a fairly extensive experimental investigation,
the results of which are given in CUR Report No. 37.

The GBV formulas (clause 46-3c) are as follows:

AZ 2 6
W =[o.5c-l—16£—¢)—]1o cm
max a

where the crack width A/ is equal to:

By = (ag + 0.329(1 + 3\[ i)
Q

The steel stress Ua to be substituted into these expressions is determined

ae

M
u

fromOa =M. kg/cnﬁ.
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Approximately the same value for the maximum crack width is obtained
with the CEB formula:

( bo . h bo . h -6
max:\\1.50+0.16m—)(0a—16—;1—;;?).10 cm

=

In those regions where the shear force plays a significant part the
maximum crack width can no longer be calculated by means of the GBV for-
mula. The widths that actually occur can be much greater than indicated
by this calculation. Accordingly, in such regions the crack width is
calculated from the curvature that occurs there. The basic assumption
made for this purpose is that the curvature which develops over the crack
spacing manifests itself entirely as a rotation by the distance between
the tensile fibre and the neutral axis. A value of 0.7 h is adopted for

this distance. Hence:

w =% . A . 0.7Th cm

The crack spacing AZ in such cases can, however, be calculated with the

mentioned formula given in GBV - code of practice.
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4. Comparison of measured and caleglated values

The results of the experimental investigation concerning the two-
span reinforced concrete beams, discussed in chapter 2, will now be com-
pared with the results of calculations according to chapter 3 of this
paper. The comparison is presented in Figs. 38 to 40 for beam B1 to B3
respectively. Those diagrams show the bending moment distribution, the
deflection and the maximum crack width as functions of the loading acting
upon the beam.

As mentioned before the first calculations were carried out without
taking into account the effect of shear force. As can be seen in the
diagrams mentioned above, the comparison of the measured and calculated
values revealed considerable discrepansies. The differences concern the
moment distribution, the deflections and the crack widths at the interior
support. The more the distribution of the reinforcement deviates from the
distribution of the elastic-moments the greater are the differences.

The relative great difference between the measured values and the
first calculations with respect to the deflections is striking.
Altogether this led to the conclusion that the shear effects had wrongly
been neglected.

The results after taking into account the shear force effects accor-
ding to chapter 3.2 were remarkably better. There is now reasonable good
agreement between the measured and the calculated moments and deflections.
This is clearly apparent from the diagrams concerned in Figs. 38 to 40.
(The deflection diagrams also include the calculated results for the de-
flection neglecting the extra caused by the shear deformation of the beam,
but including the correction of the flexural stiffness with regard to
shear. )

With regard to the maximum crack width at the interior support it is
clearly apparent also that the CEB- and GBV formula as well, are quite
unsuitable for that region of the beam. With the calculation of the crack
width from the curvature that occurs there, values are obtained which
approximate reality much better. A phenomenon not solved by the revised
calculation is the fact that in the tests of beam B2 and B3 the yield
moment at the interior support and after that the span moment, reaches a
higher value than the theoretical one. On the contrary the agreement be-
tween both values was very good for beam B1 and B4 and also for test

beams A1 and A2 used to measure the M-K diagrams of the sections concerned.






- ol -

28000 28000
— moment in /
_ — the spans // /
T — 24000 24000 : /
e 1 N s
e \ 20000 : 20000 ! y
IR 0 in kg a in kg VY
oo &\ 16000 16000
N /) support
\\\\ \ 4 /+
O q 7, moment
5i_\ -\ =5-12000 12000 _——rAF—
\\ \ /
\I \ //’(
A 2
8 8000 8000 |45
I x 77,
|
—] 4000
Wmax
GB.. IESZ Mys MLIJV
] l
1.6 1.4 12 10 08 0.6 04 0.2 0 1.0 0.8 0.6 04 02 0 800 1600 2400 3200 4000
max. crackwidth in mm «—— deflection fr, in cm «——}—— moment in kgm
. ————— 5pans — meas. deflection elastic moments ~ ———
P
meas. max. crackwidth ; .

— — —— support o—— —o calc. deflection without shear eas. moments } spans
calc. max. crackwidth e———e s5pans effect . . ———— support
vith GB.V - formula o~ — —o support * » calc deflection with complete ca?lc. moments +———+ Spans

L width shear effect (influence on without shear effect] +- ———+ support
catc. max. cractwi } spans curvature and shear deformation)  calc. moments x x spans
with calculated curvatures] - ——-« support + + ditto, but without shear with shear effect |x————x support

deformation. op  pp
R B X N
Fig. 39. Beam Bz. [\W

Comparison calculated and measured values.



- 62 -

28000 28000 |
moment in Mot M
] the spans V1 vy
—— ] 25000 24000 P L
~ /
N N Bt AVA
B | 20000 20000 A
T \\ \ \ \ . I /
Tl \ \( Q in kg \\‘ Q in kg I
~
N 16000 N 16000 &/
N \ ‘ / il t
N \ i suppor
\ A Q X Q /j ,5/’//" moment
N \\_i_\._ 5412000 A 12000 = ////’//,
\ /
\\:M;\ | . /{/*
MO\ 8000 { 2 8000 ,04«{/#
AN \ 4
i\ Y
—L—53) 4000 1 /
Wmax fm
GBY. 62 6B 87 Mus | Mus
|
1.6 14 1.2 10 0.8 0.4 0.4 0.2 0 1.0 0.8 04 0.4 0.2 0 800 1600 2400 3200 4000
max. crackwidth in mm «—— deflection fy in cm «——f—— moment in kgm
, spans ———— meas. deflection elastic moments R
meas. max. crackwidth . .

— — — — support o—.—.—o calc. deflection without shear eas. moments } spans
calc. max. crackwidth e—e Spans ef{ec’; ection with o ~——~— support
with GBV - formula o — — o support * » calc. deflec ion with complete C§Lc. moments }+—+ spans

dth shear effect (influence on without shear effect] +- — — -+ support
CE?LC' max. crackwi } spans curvature and shear deformation) calc. moments x x Spans
with calculated curvatures] x————x support + + ditto, but without shear with shear effect | x—-——xsupport
deformation. 5P pp
R b
L i AN

Fig. 40. Beam Bz . W

Comparison calculated and measured values. MV1M S
V2



- 6% -

Although the differences are relatively very small, this phenomenon of
apparently low steel stresses therefore is striking, because this resul¥
is opposite to what could be expected with regard to the shear in that
region. The effect of bond-slip could be an explanation for those
differences. Otherwise bond-slip has the same effect as what is called
shear force effect in this paper. If one would take this into account,
however, a complete new calculation procedure must be developed.

As a further comparison of measured and calculated values the curva-
tures that occur along the length of the B beams concerned were plotted
into diagrams. The results of this are presented for beam B3 in Figs. 42
to 47 (Fig. A1 gives an explanation of the symbols used). In the figures
the average curvatures in each beam element (the latter obtained from the
sub-division of the beam into elements with regard to the calculation) is
plotted against the average moment in that part of the beam. Both
measured and calculated values are given; for completeness the actual
shear force is noted down too. The diagrams concerning the other beams
B1 and B2 are showing about the same agreement; they are not presented
in this paper.

Having regard to the fact that the calculation must always be to
some extend constitute an idealiéation of reality, the agreement between
the calculated and the measured curvatures and shear forces can be des-
cribed as good. Figs. 43 and 44 give rise to the remark that a 'falling
branch' occurs in the region of the beam near the interior support. This
is simply a consequence of the fact, that while the support moment has a
constant value after reaching the yield moment, the moment in the span is
still increasing. The zero point of bending moment moves in the direction
of the central support. Therefore the average moment in the beam element
besides that support is decreasing.

In conclusion, from the above, it can be inferred that the prin-
ciples and basic features introduced into the calculations do indeed
provide a reasonable good representation of the really significant
factors. However, one could well imagine that in a case of very good bond
properties the influence of shear is less than shown in this paper. The
given calculation procedure provides for these cases values which lay
on the safe side, especially with regard to the crack widths near the
interior support. The latter being decisive for the service-ability in

most practical cases where the distribution of the reinforcement is not
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in agreement with the distribution of the elastic moments (in this way
that support reinforcement is transferred).

Thereforeit was decided to carry out the further calculations of
our investigation in correspondence with the procedure discussed in this
paper. These calculations must, as mentioned in the introduction, lead
to real numbers for the limitting factors concerning the distribution of
reinforcement in 'hyperstatique' structures with regard to the service
ability requirements. At the moment these calculations are being carried

out.
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Appendix I. Calculation of the élastic distribution of moments.

WP

AN AN L\
al Lal |, L |
L(1-2Q)
area of moment diagram
of statically determined
primary system
M ={P + a(P_-P )} oL M'|
1 1 2 1 2

M ={P +a(P -P )}al
2 2 2 1

Ms

MV1 MVZ

]

The angular rotation due to applied loads: = EI Pq ;-oclz (‘I—oz){P1 (1+oc)+Pz(2-a)}

1
3 Mgt

due to M : 5 EIo
s s
from which:
1
M, = Fat(i-0) {2 (14a) + 2 (2 - o)} (1)

Then the moments in the spans:

-1 _ 5 2 .3
M= 5al {P1(2 Ja+a” ) + Pz(Boc a )} (2)
_ 1 _ 2 3 a2 B

M., =3 al{Pl( T+3a+0° -a° ) + Pz(za 40° +a )} (3)

From the equation (1) and (2) the ratio of max. moments is:
3 2 3
Mo i P1(2—3a+oc ) + Pz(Boc -a”) )
M " P (1+a) + E, (2-0) 4

Suppose that between the two point loads the resultant moment must be constant,

then follows from the equations (2) and (3) the condition:

. OCE(;-(X) B (5)
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Beams B, Bz and Ba:

l_ =2 nn
.3
a = ) ]
== 1 Q
Ms = 0.704 P = 0.176 Q eq. (1)
M= 0.486 P = 0.122 @ eq. (2)
L 0.310 P = 0.078 Q eq. (3)
MVl
F- = 0.690 eq. (4)
S
Beam Bs :
L =2 m
« -3
P =0.128 Q
P = 2.905 B {Pz - 0.372 § eq. (5)
M, o= 1.429 P1 = 0,183 @ eq. (1)
M, =M _ =0.750P = 0.096 Q eq. (2) and (3)
MV1 MV2
B C 0.525 eq. (4)
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Appendix II. Calculation of the yield moment.

b o
d'=Rdhi[ j
wO X= kxh
A- o0 bh L oF
Wo
A= 10 °! bh
€a > Ege
cross -section strain

From the strain distribution:
1

1o 8 x-d' _ el -
€h = iy o €y ('I X) (1)
and thus
1]
1 _ g _Ay< g1
Ga B E:’bu E (1 k )= 0ae (2)

From equality of total tensile and compressive forces follows:

] V _
Np + N -N =0 (3)
w' k! )
2 ' 0 ¢ o4y _ o -
3 %% %bu * 700 Cbu Za kX> 700 %ae = O (4)
2 Bu)o u); . Bwo wo’ s .
+ * % 5000 G fpu Pa ~ %ac) " 30057 (o Sbu Pa ki) = O (5)
bu 0 bu o]
from which: w; N
— e 7
3w 2 wo sbu Ea kd
ky = 4000’ (_ B, = %) [1 o R ! ]
o= (3> epy B )
4000£ no b a ae
(6)
The bending moment is
w' k!
_ _2_ _ 2 ] .0 - __51_ _ ] ¢ :] P4 -
Moo= 5k (0 -gk) oy + 750 (1 kx)(1 ky) Epy By | M (1)
k!
d
[} ) = 4t
If g B, (1 kx) =0, (8)
. s s o et
then follows, with equation (3) and o) =0l =0, (9)
from equilibrium conditions:
o
£ v _ae ') =
3k Oy~ To0 Wy ~ %) =0
w - o
L 2emu) e (10)
x 200 ol

bu
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Equation (7) becomes in this case
ml
] [¢] - [] 2
[3 k (1 - 8 kx) %%u * 700 (1 kd) cae:l bH
Substitution of:

géu = 3.5k

ol , = 0.6 x 315 = 189 kg/cn®  (table 1: 20 cm cubes)
_ 6 2

B, = 2.03 X 10 kg/cm 2} (Fig. 6)
= 1 -

O, = Ope = 4350 kg/cm’

in the equations (6), (8) and (7) yields for

Y% 3
52 =3 k = 0.125 (x = 2,95 cm)
o gl = 1334 kg/cm®
M, = 2155 kem
w' 5
;)2 = 5 k, = 0.181 (x = 4.28 cm)
© ol = 3118 kg/ecn”

M. = 3187 kgnm

(1)
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Appendix III. Calculation of the moments. from the
support reactions.’

LY,
é 2 ZEE a =38

al al L L=2m
L(1-2a)
RA Rs RB
P1l le
Viw 2 Ms
Ms
RA*RBT TRS M
2 2 V1 P1V2
Beams Bi, Bz and Ba.
M
) s 1
Ry + By =2 {E&(1—a)+ Poa- 7;} =7 {BPl + 3?; - 4MS} (1)
@ =-2( +P) =R, +Ry+ Ry (2)
Combining Eq. (1) and (2), and substitution P1 = Pz:
The moments in the spans become
Moo= % ol (RA + RB) = g (RA + RB) (4)
M, = %RS aL - M = jz Y {'(RA + Ry) - RS(1 - 2(1)} (5)
1. 1
=-2-<RA+RB) -ERS.
Beam Bz .
Substitution:
P = 2.905 P (6)
and
Q =2(P1+P2)=7.81 P =R, + Ry + Ry (1)
in Eq. (1) yields:
M = 0.439 Ry - 0.561 (RA + RB) (8)
Finally is:
M, =M, = 0.575 (R, + Ryp) (9)
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Appendix IV. Calculation of the failure load.

Beam Bi, Bz and Ba. O\/K‘

[ L: 2'11 _J 7\U: s

<& e

o ol

050 075

|
|

3

MS = MUS
v 4y

TVZ Rs

My1=Ny Mys
R, =P -+M
A T Tu 2 us
w = Mo = Ku L (Mu = yield moment, see appendix IT)
- _3 _ 1
Moo= 0.75 Ry = 7 (1>u 5 Mus)
From equations (2) and (3) follows
1
Pu =6 Mus (BAu +3)
or
Q. = 2y (8N + 3)
u 3 Tus u

That yields

_4
RA -3 Au Mus
and

_ 4 2 _ 1 1_1 -
Moe =3 My Mg 4 "6 Mos (8h, + 3)2w 4M118 (4}\11 R

(1)
(2)

(3)

(4)

(5)

(6)

(7)
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Beam Bz .
. 075m . 050m , 075m .
I 1 !
Py 2.905 Py M.<M
¢ s—'"'Us
——
S . A
1R
u_______§- -7 Rs
v -
1 Mv2-7\u MUS
R, = 15 (1.25 P, + 0.75 X 2.905 P - Mus) =
1
= 5(3.4288 B - M) (8)
M= Yy = M Mo (9)
M_=1.25 R, - 0,50 P = 8(2.629 P, - Mus) (10)
From equations (9) and (10) follows
Bhu + 5
P = 13144 Mus = 0.076 Mg (8}\11 +5) (11)
or
Q, = 7.81 P = 0.594 M__ (m\u +5) (12)

That yields
R, = 0.1304 M__ (exu +5) - 0.5 Moo= 0.1304(8}»u+1.167)Mus (13)

M_=0.75 R, = 0.0978 M__ (Bxu + 1.167) (14)
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Appendix V

CALCULATIONS CONCERNING THE EFFECT OF SHEAR ON THE BEHAVIOUR OF A
CRACKED REINFORCED CONCRETE BEAM

The theory concerned was earlier discussed by Mcrsch, Kupfer and
Dilger% .

The deformations due to shear force in cracked concrete are
investigated with reference to the beam portion represented in fig. V-1.
The deformations which occur can be plotted in a Williot diagram with the
intersection of stirrup and compression diagonal as the fixed point (see
fig. v-1b); then:

b~ tg ¢ =

1
€q €y
+

sinza(cfg a+ ctg B) sin“Bletg a + ctg B)

where ¢ is the shear strain, €, is the tensile strain in the stirrup.
E% is the compressive strain in the compression diagonal, (is the angle
of the compression diagonal and o is the angle of the stirrup with
respect to the axis of the beam.

From the vertical equilibrium conditions (see fig. V—1c) it is ncw

obtained for the "diagonal tension":
T
T = ——
a sin «
while the total cross-sectional area of the stirrups in the secticn
concerned is:
Ay . z(ctg a+ ctg B)sina
Aa = t sin o

where At is the cross-secticnal area of a stirrup (two-leg or fcour-leg)
and t is the (horizontal) stirrup spacing.
If the quantity of stirrup reinforcement is expressed as a fracticn

of the concrﬁte area, namely:

W -5
t b.t.sin a

&
) Kupfer, H.:

Erweiterung der Morsch' sehen Fachwerkanalogie mit Hilfe des Prinzips
vom Minimum der Forminderungsarbeit;

CEB - Bulletin 4'Information, nr. 40, Jan. 1964.

Dilger, W.:

Verdnderlichkeit der Biege- und Schubsteifigkeit bei Stahlbetontrag-
werken und ihr Einfluss, auf Schnittkraftverteilung und Traglast bei
statisch unbestimmter Lagerung;

Deutscher Ausschuss fiir Stahlbeton. Heft 179, 1966.
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then:

A = mt.b.z(ctg o + ctgB) sin q.

Now the (tensile) strain of the stirrup can be calculated:

T T
E_ = = - D
a B .A Ea.mt.b.z(ctg o + ctg p)sin g

The (compressive) strain of the compression diagonal can be calculated
in approximately similar fashion.
Consider the vertical equilibrium (fig. V-1c, lower diagram):
Tb=-9%§.
The cross-sectional area of a compression diagonal is:
B = b.z(ctg a + ctg B)sin B.

We thus obtgin:
T T

1 = =
T = m S n e
b Ebo.B Ebo.b.z(ctg(x + ctgp )sin B

On substitution of these values of €, and Eﬁ into the expression for the

shear strain, it followss

: 1 1
¢ = _ 2 { N + . }
b.z(cte a + ctgB) Ea.wt.51n4'a LA sint B

For the uncracked concrete the shear strain was:

so that, corresponding to this expression, the shear stiffness for the

cracked concrete is: 4 5
(¢.5) E,.w; B} .sin”p (ctg a + ctgp )
G.B = . b.z.
g Cos 4 . . 4
Ea.wt.s1n. a + B osin B

4 —_ 1 1 .
Putting n = Ea/Ebo’ this becomes:

Ea.wt.sin4 a.sin4B(ctg a + ctg B)2
4

(G.B)g =

. .4
n . . S1n sin
Wy a + B

The assumption that the compression diagonals of the lattice are
inclined at 450 (i.e., B = 450) is generally a sufficiently accurate one.
Furthermore, vertical stirrups are normally employed.

On substitution of a = 90° and B = 45° the formula for (G.B)g is

greatly simplified, namely:
Ea'wt
©B)y =Ty ¥ 7
o't
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¥*
From tests ) it has been established that the steel stress in the
stirrups is:
at w

- T
g 0,8
t

where TO = the shear stress determined by the expression BEE and To. g
. 9

- the shear stress associated with the development of the inclined
cracks. This signifies in fact that the stress in the stirrups prior to
cracking may be neglected.

From the literature already referred to, it appears that To,s =
9

é%c& provides the best agreement between the measured results and the

calculated results.
Having regard to the above, the steel strain occuring in the formula
for (G.B)g should be reduced by a factor:

TA = T

k = 0 = 0,8
0
In our computation programme this has been approximated as:
k x
=1 = T

where Tr is the shear force in the part of the beam concerned, when the
cracking moment is reached there.

The formula for the shear stiffness in the cracked state becomes:

E_.w

(.3),, = 2753%6;31‘2 . b.z.

The effect of the shear force upon the horizontal compression
resultant and the horizontal tension resultant (the forces associated
with bending of the beam) follows from further considerations .of

equilibrium with reference to fig. V-1°.

v,

3
) Leonhardt, F. and Walther, R.:

1) Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne
Schubbewehrung;
Deutscher Ausschuss fiir Stahlbeton, Heft 151

2) Versuche an Plattenbalken mit hoher Schubbeanspruchungs;
Deutscher Ausschuss fiir Stahlbeton, Heft 152

3) Schubversuche an Plattenbalken mit unterschiedlicher Schubbewehrung;
Deutscher Ausschuss fiir Stahlbeton, Heft 156

Leonhardt, F., Walther, R. and Dilger, W.:
Schubversuche an Durchlauftridgern;
Deutscher Ausschuss fiir Stahlbeton, Heft 163
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From the horizontal equilibrium in the upper diagram of fig. v-1°
obtain:

pu— L
Na = Nb Tacos o

and from the equilibrium of moments (with respect to the point of

application of N!):

b
M o-N.z-T cosa. 1/2 2 =T .1/2 2 . ctg B =0
Earlier on we had already obtained:
T
a sina

From these three equations it follows that:
M, -N.z+T. zotg & - 1/2 7 . zctg @ -1/2 T . zctg B =0
M

or: N} = Eﬂ - g(ctg B - ctg a)

On similarly considering the equilibrium conditions with reference
to the lower diagram of fig. V-1°

v = -
Ny =N, - T, cos §]

where, as already earlier obtained:

, Wwe obtain:

T
Ty = Sin §
Furthermore, the equilibrium of moments about the point of application
of Na iss
el ! - - =
M -N! .z-T cos f. 1/2 2 - T . 1/2 z ctg a =0

From these three equations it follows that:

M, -N, .z+T.zctg B- 1/2 z . T ctgf - 1/2 T . z ctg a=0

or a=—1:—ai+-g(ctgf3—ctga)

From the above considerations of equilibrium it thus appears that,
as a result of the shear force, the compressive and the tensile force
associated with the bending moment are respectively decreased and in-
creased by an amount equal to

AN = (ot B - otg )

o]

With the assumed B = 45 and o = 90O it follows

AN = 1/2 T,

we
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Samenvatting

In deze publikatie wordt een overzicht gegeven van experimenteel
en theoretisch onderzoek van doorgaande balken in gewapend beton. Be-
gonnen wordt met een algemene beschouwing over het gedrag van dit type
konstrukties. Vervolgens worden de uitgevoerde proeven besproken.
Deze betreffen liggers op 3 steunpunten. De berekeningsmethode wordt
daarna uiteengezet. In deze methode kan de invloed van de dwarskracht
worden meégenomen. De gemeten en berekende waarden worden tenslotte
vergeleken. '

Het onderzoek leidt tot de konklusie dat de dwarskracht-invloed
in de berekening van de vervormingen en de momentenverdeling van de
doorgaande balken niet kan worden verwaarloosd om goede overeenstem-

ming te verkrijgen tussen de gemeten en berekende waarden.





