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NOTATION

cylindrical co-ordinates

deflection perpendicular to middle plane of slab

deflection at centre of circular slab

total depth of slab

distance from centroid of reinforcement to extreme tensile fibre of
concrete (in radial and in tangential direction)

Poisson’s ratio

effective depth of concrete section in radial and in tangential direction
radius of circular slab

cross-sectional area of reinforcement

diameter of reinforcing bars in tangential direction

diameter of reinforcing bars in radial direction

reinforcement percentages in radial and in tangential direction

(A/h x 100%)

bending moments per unit length in radial and in tangential direction
plastic moments in radial and in tangential direction

shear force per unit length in radial and in tangential direction
cracking moment in radial direction of concrete section

maximum moment that can be resisted in tangential direction (in the
presence of normal compressive stresses)

flexural rigidity of slab in radial and in tangential direction

ik,

concentrated load

uniformly distributed load

collapse loads

flexural strength of concrete

splitting strength of concrete

cube strength (average) of concrete

maximum compressive stress in concrete at collapse

yield stress in steel




Experimental investigation of the effect of
varying the reinforcement upon the
behaviour of circular slabs

Report on experimental research carried out in the Stevin
Laboratory of the Technological University of Delft by the
two-last-mentioned authors for obtaining the Diploma in
Civil Engineering.

1 Introduction

The analysis of reinforced concrete slabs is usually based on the linear elastic theory or
on the yield-line theory. So long as a concrete slab is uncracked, the bending moment
distribution in it will be in reasonably good agreement with the results of the linear
elastic theory applied to an isotropic plate. The yield-line theory gives the value of the
collapse load, provided that the correct collapse mechanism has been assumed. This
theory does not, however, give the values of deformations or the displacements asso-
ciated with the collapse load. For one and the same value of the collapse load these
displacements may vary considerably, depending on the pattern of reinforcement
employed, in the choice of which the designer has a certain amount of freedom.

With increasing cracking the rigidity of a slab will diminish. Under such conditions
the rigidity will depend mainly on the quantity of reinforcement provided. However,
if the reinforcement is not the same in different directions, the slab will have become
anisotropic and its bending moment distribution will differ from that in an isotropic
slab. If there are big differences in the percentages of reinforcement, the distribution
of the moments may be considerably altered in consequence. In the case of the cir-
cular slab, for example, anisotropy may give rise to entirely different results. Thus, the
well-known singularity under a point load may disappear, while under uniformly dis-
tributed load the moments at the centre may become zero.

This modified bending moment distribution may result in another — a different —
cracking pattern which may finally develop into the yield-line pattern of the collapse
mechanism. The object of the research reported here was to study this development
and more particularly to investigate the effect of anisotropy in the cracked state — due
to different reinforcement percentages — on the rigidity (or the displacements), on the
collapse mechanism and on the magnitude of the collapse load.

To this end, model investigations were carried out *) on ten circular slabs made of
reinforced micro-concrete (scaled-down concrete for models), six of which were sub-
jected to a concentrated load applied at the centre and four to a uniformly distributed
load.

*) in the Stevin Laboratory



The circular slab was chosen because of its remarkable behaviour with regard to
anisotropy and because, with its axial symmetry, the principal stress directions coin-
cide with the reinforcement directions and the torsional stiffness has no effect.

The concentrated load acting at the centre of the circular slab moreover constitutes
a basic case by means of which the effect of concentrated loads on slabs can be in-
vestigated independently of the slab boundary conditions.

The behaviour of the slabs was found to be suitably amenable to investigation and
to give some surprising results. Thus, for instance, in the case of uniformly distributed
load it was found that anisotropy could lead to a different collapse mechanism with a
lower collapse load than that occurring in the case of isotropy. Also, an insight
into the effect of the membrane forces was obtained. These forces may give rise to
different collapse mechanisms with higher values of the collapse load. With the con-
centrated load, however, the phenomenon of punching shear occasionally altered the
situation in that a collapse mechanism based on yield lines then did not suffice.

;% 25mm

|2R=1000mm |

Fig. 1. Dimensions of slabs.

Fig. 2. Test set-up.
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Fig. 3. Percentages of reinforcement (w=A/hx100%) in the slabs under investigation.
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Apart from this punching shear effect the phenomena were found to be capable of
explanation on the basis of simple considerations; this is also true of the effect of the
membrane forces. And although we are here concerned only with a slab of simple
shape, the results and the considerations associated with them are applicable also tot
other slab shapes, while the conclusions are of wider scope.

2 Model research

The tests for this research were performed on circular reinforced concrete slabs of
100 cm diameter and 2.5 cm thickness (Fig. 1) which were loaded by a point load or
uniformly distributed load. Fig. 2 shows the experimental set-up for the slab tested
under point load.

2.1 Details of the slabs

Ten slabs were tested; these were provided with the following percentages of rein-
forcement (Fig. 3).

The reinforcement was disposed in an axially symmetrical arrangement, except in
slab 15, which had an orthogonal mesh. The reinforcement was woven. The tangential
bars were joined by means of butt welds (Fig. 4).

The radial reinforcement (see Fig. 4) comprised some discontinuities, which were
introduced in order to approximate as closely as possible to a constant reinforcement
percentage.

After testing, the thickness of the slabs and the concrete cover to the two sets of
reinforcement (radial and tangential) were determined in three places and the average
was then calculated (Fig. 21).

The details of the slabs are schematically summarized in Appendix A.

2.2 Materials

The material properties of the concrete were characterized by the following average
values:

— cube strength o\, =  50.0 N/mm®
— flexural strength oy = 6.0 N/mm?
— splitting strength Ogp = 4.2 N/mm?

_ modulus of elasticity (at origin of stress-strain diagram) E;, = 34400 N/mm?
compressive strain at maximum compressive stress in
concrete Epy = 0.2%
Steel with a distinct yield range was used, in order to ensure that no fracturing of the
reinforcement would occur. The smallest bars, of 1 mm diameter, were of steel grade
FeB 240 HW-NL and were plain. The other bars were deformed bars of steel grade
FeB 400 HW-NR. For the purpose of comparison the tangential reinforcement in
slab 13B was of grade FeB 400 HK-NR instead of FeB 400 HW-NR.

The materials used and the material constants are fully presented in Appendix B.



2.3 Testing procedure

In order to have hinged (freely rotatable) bearings under the slabs, the latter extended
10 mm beyond the bearings (Fig. 5). To prevent this outermost circumferential portion
of the slab from acting as a compression ring, it was provided with saw cuts extending
radially inwards at the rocker columns forming the bearings (Fig. 5).

The point load was applied by means of a jack, the force being transmitted through

a punch (75 mm diameter) to the slab (Fig. 6).

The uniformly distributed load was applied with the aid of air pressure, which was
exerted by an inflated rubber bag enclosed in a steel casing. This load, like the point

load, acted on the underside of the test slab (Fig. 7).

e 100 mm
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Fig. 5. Detail of bearing with hinge and rocker column.
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Fig. 6. Method of applying the point load.



Fig. 8, Fig. 9. Collapse patterns of slabs 02 and 03; freely supported, loaded over entire area
(uniformly distributed load).

Note Collapse pattern of slab 04, pyramid-shaped: o, = 0.5 o, =1



% r --concrete slab
- I
\

il \
b AERREREEEEEEEREASN

inflated bag \
\

N :5\1\ RN W\

[ steel casing  \

\:\ testing frame
Fig. 7. Detail of bearing and method of applying the uniformly distributed load.

The deflection of the slab was measured at several points by means of dial gauges.
Furthermore, with the aid of the shadow moiré method an overall picture of the
distribution of the deflections of the slab was obtained. Half a slab was used for this
purpose. The cracking pattern was drawn in the other half (Figs. 8 and 9).

At each stage of loading, the deflection behaviour and the developing of the cracking
pattern were recorded photographically.

3 Behaviour of the slabs under point load or uniformly distributed load
3.1 General

The load-deflection diagrams of the slabs are presented in Fig. 10 (point load) and
Fig. 11 (uniformly distributed load).

1sotropic uncracked slab (v=0.2)

load P kN
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Fig. 10. Assembled test results of the circular slabs.
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Fig. 11. Assembled test results.

With increasing load the diagram at first conforms to the straight line calculated
for an uncracked isotropic slab. As a result of the cracking moment in the tangential
and the radial direction being exceeded, however, the load-deflection diagram deviates
from that line: the slab becomes less rigid and develops behaviour which may vary
greatly from one slab to another. With further load increase, the zone where cracking
occurs will gradually spread, so that the slab loses more and more of its rigidity.

Also, with increasing load, yielding of the reinforcement will occur, and the zones
where this occurs will increase and spread until a mechanism develops which causes
the slab to collapse. During the loading process the slab will thus comprise various
zones which differ from one another in their flexural rigidity.

The bilinear moment-curvature diagram in Fig. 12 has been adopted for determining
the flexural rigidity values.
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Fig. 12. Moment-curvature relationship for reinforced concrete.

In the uncracked state the effect of the reinforcement on the flexural rigidity is
neglected and the following expression is adopted:

El, = Ehd j12(1—v*)  [Nmm]

10



In the cracked state the flexural rigidity has experimentally been shown to be pro-
portional to the percentage of reinforcement (w) in accordance with the formula:

El,=w-h*10°  [Nmm]

In the c-acked state the reinforcement percentage is therefore representative of the
flexural rigidity.

3.2 Slabs loaded by a point load

From Fig. 10 it is evident that the slabs 11, 12 and 14 are much alike as regards
strength and rigidity. These slabs had the same tangential reinforcement percentage
(w,), but differed greatly in their radial reinforcement percentage (w,). It appears that
in a slab loaded by a point load the radial reinforcement has little effect on the be-
haviour of the slab.

On the other hand, halving the tangential reinforcement percentage w, (slab 11 —
slab 13A) has a considerable effect on the strength and rigidity of the slab. Slab 15,
which was reinforced with an orthogonal mesh, served for comparison.

£ G

Pot

{

o

Fig. 13. Forces acting on a slab element.

In the following treatment of the subject the effect of anisotropy on the behaviour
of the slab will be illustrated with theoretical results. (The background of the theory is
dealt with in Appendix C.)

Fig. 13 shows an elementary portion of the slab with the forces acting on it.

For a slab supported on hinge-type bearings and subjected to a point load it was
investigated how the magnitude of the ratio of tangential to radial flexural rigidity

o =\/ ki/k,) affects the deflections and bending moments.

POINT LOAD i
fpaes ==L | splestmgtente T,
ﬁ{:;ﬁ 1 009375 fr—ﬁz 100
ﬁtr: i“ V' 01625 5-?2 173

Fig. 14. Theoretical effect of k; and k, on deflection at the centre of the slab.
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The deflections at the centre of the slab for three values of o are indicated in Fig. 14.
It appears from this that halving the radial flexural rigidity has only little effect on
the deflection at the centre of the slab; on the other hand, halving the tangential
flexural rigidity has a considerable effect. This result is in agreement with the experi-
mental evidence.
In Fig. 15 the radial and the tangential bending moments are presented for various
values of o.
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: Ki=Kr
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P P

Fig. 15. Distribution of radial and tangential bending moments.

From this diagram it emerges that for values of &> 1 (i.e., if the tangential flexural
rigidity is greater than the radial flexural rigidity) the bending moment distribution in
the slab no longer shows a singularity. The moments at the centre of the slab now are
of finite magnitude. For o =2 (i.e., if the tangential flexural rigidity is four times the
radial flexural rigidity) a substantial reduction of the extreme moments has occurred
and the distribution of the moment across the slab is much more uniform.

For values of « < 1 the distribution of the tangential moments becomes even more
unequal than for o =1 and the radial moments increase considerably in magnitude.
Values of & < 1 appear to have an unfavourable effect.
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In reality the loaded reinforced concrete slab has zones with different flexural
rigidities because of the progressive cracking of the concrete (in two directions) and
the yielding of the reinforcement. The considerations presented above were intended
merely to serve an illustrative purpose.

Collapse behaviour (point load)

From Fig. 10 it is apparent that, besides, the rigidity of the slab, its strength is also
to a great extent determined by the quantity of tangential reinforcement. The shape
of the curves in that diagram suggests that collapse of the slabs 11, 12 and 14 oc-
curred rather suddenly. In the case of slabs 13A, 13B and 15 it was found that, with
the approach of collapse, the deflection increased greatly, which indicates gradual
collapse. An inspection of the collapsed slabs (Figs. 16 to 21) shows that collapse of
the slabs can occur before the radial cracks in which yielding of the steel develops
have reached the bearings and that in the state of collapse one or more circular
cracks may occur on the loaded side of the slab. In every case a conical portion was
forced out of the slab at the point load.

The slabs 13A and 13B (Figs. 18 and 19) display on the tensile side a very dense
pattern of radial cracks extending to the bearings. There are circular cracks on the
loaded side of these slabs. In slabs 11 and 14 (Figs. 16 and 20) collapse occurred be-
fore the radial cracks had reached the bearings. In slab 14 an incipient circular crack
on the loaded side of the slab can be seen.

Slab 12 (Fig. 17) is very similar to slab 11, except that some of the radial cracks
have reached the bearings.

Slab 15 (Fig. 21), provided with orthogonal mesh reinforcement for the purpose of
comparison, in the collapsed state has a not fully developed radial cracking pattern
(as slabs 11, 12 and 14 have) and displays a circular crack on the loaded side (cf. 13A
and 13B). A conical portion has been forced quite out of the slab at the centre. The
three holes around it served for measuring the concrete cover and the thickness of the
slab.

With regard to the magnitude of the collapse load (ultimate load P,) an attempt can
be made to predict this on the basis of the collapse mechanism which K. W. Johansen
has indicated for circular isotropic slabs (Fig. 22) and which is also adopted in CUR
Report 26A, ref. [2].

From a consideration of the equilibrium of a slab segment it follows that:

P,,=2nM,,

Comparison of the collapse loads calculated in the above manner with the experi-
mentally obtained values (Fig. 23) shows that great differences are liable to occur.

The slabs 11, 12 and 14 collapsed before P, was attained. The collapse loads of the
slabs 13A, 13B and 15 were substantially higher than calculated according to Jo-
hansen.

13



op

t

Slab 11.

16.

Fig

de

i

loaded s

-

-

-
=

-

-

e

Fig. 17. Slab 12

loaded side

Fig. 18, Slab 13a.

Joaded side



loaded side Fig. 19. Slab 13b. top

loaded side Fig. 21. Slab 15. top



Pdg
i *%d\{ “Mt‘p Rdg

pr\ M, =o(edge) yield cracks
R

Fig. 22. Equilibrium of a slab segment at collapse, according to Johansen (point load).

12)
Pexp WO |
Py o8f
boooet
04f
02
001 5tab |11 [12 [BA[BE[ |15
wie, |1 ] 1]05]05[1 075 ) ) .
wro, |1 |05]1 1 ]025[075 Fig. 23A. Comparison of Pexp with P, ;.

* orthogonal mesh

slab [Pexp [Pul [Pu?2
1 15,2 15,8 20,1
12 145 16,1 204
13A 1105 70 111

BB_[108 |69 [111 . . .
% 140|155 195 Fig. 23B. Experimentally determined and

15 127 93 [136 calculated collapse loads in kN.

]
N
]

08
08f
Q4
02r
00

1
|

stab 11|12 [13A]138[14 [*15
wto, |1 (1 [05[05] 1 ]075
wrel, {1 05]1 [1 1025075 Fig. 23C. Comparison of Pex, With Py ».
*orthogonal mesh

Collapse load calculated according to Johansen not reached in the slabs 11, 12 and 14

It has already been mentioned that when these slabs collapsed the radial yield cracks
had not yet fully developed, although the magnitude of the load had come fairly close to
the collapse load calculated in accordance with Johansen’s method. This last-mentioned
phenomenon indicates the development of a compression ring in the outermost part
of the slab. This will be further considered later on. Suffice it to mention here that, as
a result of this behaviour, the collaps load associated with the mechanism already
referred to could well have been considerably greater than the collapse load according
to Johansen, but that some other phenomenon intervened to prevent this.

16



The fairly sudden collapse that occurred in these slabs is a further indication in that
direction. Collapse may have been caused by the rotational capacity having been
exceeded at sections under and beside the point load, where very large curvatures oc-
cur, and by the phenomenon of punching shear. As regards the latter it can be pointed
out that, in consequence of bending, the tensile zone of the concrete was rendered
incapable of co-operating and that therefore the large shear stresses had to be trans-
mitted by the compressive zone only. It will not, however, be attempted here to enter
into a discussion of this complex phenomenon.

Collapse load calculated according to Johansen exceeded in the slabs 134, 13B and 15

To explain why the collapse load P, ; was exceeded it is necessary to include the mem-
brane forces, which develop with increasing deflection of the slab, in the considera-
tion of the problem. A “‘compression ring” will be formed in the outer part of the
slab, as a result of which the moment M, that can be resisted in the tangential direction
can substantially increase in magnitude.
Fig. 44 shows how the moment that can be resisted at a section varies when a normal
compressive force is transmitted across the section. In the accompanying table the
ratio of the maximum moment that can be resisted M, and the plastic moment M »
is given for the various reinforcement percentages employed in the slabs. The propaga-
tion of the radial yield cracks from the centre of the slab will be halted when these
cracks reach the compression ring. As a result of this a collapse mechanism is found to
occur in which tangential tensile cracks develop on the loaded side of the slab (Figs.
18, 19, 21 and 24).

The magnitude of the collapse load can be determined from considerations of
equilibrium (Fig. 25).

Since the reinforcement percentage w, is less than w, in the slabs considered here

R1]
[ "
- R=500mm -

Fig. 24. Collapse mechanism of a slab under point load (slabs 13A, 13B and 15).

Fig. 25. Equilibrium of a slab segment where M, has been reached in the tangential direction.
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(13A, 13B and 15), yielding will occur first in the tangential reinforcement. In Fig. 25
it is indicated that the tangential moment M, has attained the value M, , (the plastic
moment in that direction) over a distance r from the centre of the slab. From the
equilibrium of the slab segment it follows that:

P2n=M, ,— M,
If M,= M, ,the load P can further increase if M, decreases.

It follows from the above that there is no point in providing the slab with more
reinforcement in the radial direction than in the tangential direction.

For M, = 0 the value found for the load P is precisely P, (Johansen); in this case
M, is therefore zero in every part of the slab. If M, can moreover take on negative
values, then P can become even larger.

If there is no top reinforcement, the largest value of P is attained when M, becomes
equal to the cracking moment M, ; of the section. With M, = — M, , the following
expression is then obtained for the collapse load P, ,:

Pu,2/2n = fwt,p—l- Mr,s

As a result of an increase in the magnitude of the tangential moment M, that can be
resisted in the outer part of the slab — in this case because of the development of a
compression ring — the collapse load P, , is larger than P, ;.

M, can be determined with the data given in Appendix A. P, , provides a good
approximation of the observed collapse load for the slabs 13A, 13B and 15, as appears
from Fig. 23.

That the actual collapse load is somewhat less than P, , may be due to the fact
that the moments M, , in the central part of the slab are reduced a little by tensile
membrane forces and to a reduction of the flexural strenght of the concrete in conse-
quence of the biaxial state of stress.

Because of the increase in the tangential moment M, that can be resisted in the
outer part of the slab (the compression ring) the collapse load of this part is greater
than P, ,, so that the collapse of the inner part of the slab is the determining factor.

Summary (see Fig. 23)

In this part of the research (point load) two forms of collapse manifested themselves.

The slabs 13A, 13B and 15, which were of relatively low rigidity because of the
small quantity of tangential reinforcement and in which, with increasing deflection, a
compression ring was able to develop in the outer part, collapsed in accordance with
the mechanism as discussed here at a load P, , which exceeded the collapse load P,
according to Johansen’s elementary theory. The collapse load P, , was then in part
dependent on the magnitude of the cracking moment of the concrete. The development
of a compression ring was made possible by the “free” support conditions of the
slab (Fig. 5).

18



The more rigid slabs 11, 12 and 14 (with a higher percentage of tangential reinforce-
ment) collapsed rather suddenly at a load which was a little below the collapse load
value calculated according to the elementary theory, which is probably due to the
rotational capacity of the sections being exceeded and to the phenomenon of punching
shear.

3.3 Slabs loaded by a uniformly distributed load

On comparing the slabs 01, 02, and 03 (Fig. 11) it appears that the effect of the percen-
tage of radial reinforcement on the behaviour of the slab is somewhat greater than in
the case of slabs loaded by a point load.

However, on comparing the behaviour of a slab in which w, is reduced by half
(slab 01 — slab 02) with that of a slab in which w, is reduced by half (slab 01 — slab 04),
it is found that also in the case of uniformly distributed load the tangential flexural
rigidity of the slab is of considerably more influence on its rigidity and strength than
the radial flexural rigidity is.

In this case, too, it was investigated with the aid of the theory for the cylindrical

orthotropic slab what effect « (=\/k,/k,4) has upon the deflections and bending
moments.
The deflection at the centre of the slab for three values of « is indicated in Fig. 26.

UNIFORMLY DISTRIBUTED LOAD

e e i L
ﬁ: z;ﬁ 1 0039 qR—R[' 100
ﬁ: §K V2 0045 iKR_[' 5
';: iK o2 ovoesq_bfi 169

Fig. 26. Theoretical effect of &, and k, on deflection at the centre of the slab.

From this it appears that with uniformly distributed load a reduction of the radial
flexural rigidity by half has a somewhat greater effect on the deflection at the centre of
the slab than in the case of the point load. On the other hand, halving the tangential
rigidity again has much greater effect. Both these results are in agreement with the
experimental evidence.

The radial and tangential bending moments for various values of o are given in
Fig. 27. From this diagram it emerges that for values of o > 1 (i.e., if the tangential
flexural rigidity exceeds the radial flexural rigidity) the moments at the centre decrease
in magnitude.

The highest values now occur in a zone situated further outwards.

For values of o less than unity (o < 1) a singularity occurs at the centre of the slab.
The moments become infinitely large at that point. More particularly the radial
moments in the slab increase considerably. Values of o less than unity thus again
apparently have an unfavourable effect.

19



An analysis with the aid of the finite element method (using annular elements,
Fig. 28) — taking account of gradual progressive cracking of the concrete and the
slab rigidities thereafter determined by the reinforcement percentages, but not taking
account of the yielding of the reinforcement and the membrane forces that occur -
results for the slabs 02 and 04 in bending moment diagrams as indicated in Figs. 29
and 30, which still show a distinct similarity with the diagrams in Fig. 27.

As a result of yielding of the radial and/or tangential reinforcement a redistribution
of moments will occur in reality, which will be further considered later on.

From Fig. 30 it also appears that a value of « less than unity is unfavourable with
regard to the bending moment distribution, resulting in diminished rigidity of the
slab (Fig. 11).

With the aid of the above-mentioned analysis it is also possible to determine the
load-deflection diagrams of the slabs for point load as well as for uniformly distributed
load. An example is given in Fig. 31.
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Fig. 27. Distribution of radial and tangential bending moments.
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Under working load conditions, i.e., for deflections up to about 4 mm, the analysis
provides a good approximation of the actual behaviour of the slabs. Since the effect
of yielding of the reinforcement has not been allowed for in these calculations, how-
ever, for larger values of the deflection the difference between the results of the analysis
and those obtained in the model becomes greater.

801
isotropic uncracked slab (V=0.2)

01 /

load
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Fig. 31. Load-deflection diagram of slab 01 as obtained experimentally and by calculation.

Collapse behaviour (uniformly distributed load)

In this form of loading applied to the slab the tangential reinforcement likewise has a
greater effect on the rigidity and strength of the slab than the radial reinforcement has.
In comparison with point load, however, the effect of the radial reinforcement on
the collapse load in the present case is more pronounced. In the calculation of this
collapse load the magnitude of the yield moment in the radial direction (M, ,) will,
as contrasted with the case of point load on the slab, therefore also play a part.

The slabs 02 and 03 (Figs. 33 and 36 to 39) and, to a less extent, slab 01 (Fig. 32)
exhibit a wide circular crack on the tensile side on the state of collapse; this crack
goes right through the slab to the compressive side. In the outer part of these slabs
there are radial cracks extending to the bearings.

From the moiré pattern in the state of collapse of the slabs 02 and 03 (Figs. 8 and 9)
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Fig. 34. Slab 04 (tensile side). Fig. 35. Slab 04 (compressive side).

it is apparent that the inner part of the slab is almost plane, while the outer part is

conical.

Slab 04 (Figs. 34 and 35) undergoes conical collapse and is seen to have radial
cracks also on the compressive side.

For the slabs with uniformly distributed load a comparison has, to begin with,
again been made between the experimentally determined collapse loads and those
calculated according to Johansen (Fig. 40).

The starting point of the analysis based on Johansen’s approach is the same yield
line pattern as that associated with the point load (Fig. 22). In this case we obtain
from considerations of equilibrium:

qu,l = 6Mr,p/'R2



Fig. 36. Slab 02 (compressive side). Fig. 37. Slab 02 (tensile side).

i

Fig. 38. Slab 03 (compressive side). Fig. 39. Slab 03 (tensile side).

It appears that slab 03 collapses before g,  is attained, whereas in the case of the
other slabs ¢, ; is exceeded. For slab 04 the collapse load is indeed equal to twice
Qu, 1+

The observed collapse mechanism does not, however, correspond to that of Fig. 22.
For the slabs 01, 02 and 03 the collapse mechanism is shown again in Fig. 41.

This mechanism comprises a fairly flat central portion and a conically shaped outer
region (Figs. 8 and 9). It is due to the fact that the largest radial bending moment does
not occur at the centre of the slab (Figs. 27 and 29), but approximately at the tangen-
tial cracks which penetrate through the slab to the compressive side thereof (Figs. 36
to 39). Since the central region of the slab remains almost plane, the collapse of the
outer part of the slab will be of deciding importance with regard to the magnitude
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Fig. 40A. Comparison of g.y, with g, ;.

. Cm kN/m?
slab [R1exp |R1 dexp |9ut  J9u2 J9u3 [du.4
01 - 9,15 79 58 57 79 -
02 28 232 63 58 48 63 -
03 28 288 50 57 36 49 -
04 - 0 53 26 26 70 53

Fig. 40B. Maximum load ¢ (kN/m?) and position of the tangential crack (cm) as determined experi-

mentally and by calculation.
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Fig. 40C. Comparison of g., with ¢,,; and ¢,,., respectively.

Fig. 41. Collapse mechanism of the slabs 01, 02 and 03.
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Fig. 42. Collapse mechanism of the slabs 01, 02 and 03.

of the collapse load. Fig. 42 shows this part of the slab with the forces that act on it.
The magnitude of the collapse load g, , follows from the equilibrium of the annular
part of the slab:

_ Mr,p‘Rl +M{,p(R_R])

u,2 = 1
qu,2 (R —RY) (1)

The position of the tangential crack — which is given by R, — remains to be determined.

In Fig. 43 the collapse load ¢, , has been plotted as a function of R;.

The least value of g determines the position of the tangential crack. This can there-
fore be determined by differentiating ¢ with respect to R, and equating the resulting
expression to zero; M, , and M, , are assumed independently of R;.

With dg/dR, = 0 we obtain:

oM, R3=2M, "R} +3M, ,"R-R}+ M, ,"R*=M, ,*R> =0

¥p

The values obtained for R, for the slabs 01, 02 and 03 from this equation are presented
in Fig. 40B.*) For 02 and 03 they are in reasonably good agreement with the experi-

Admax kN/m2

}

R1

0 R1 occurring R=500
————R1(mm)

Fig. 43. Maximum load (¢max) as a function of the position of the tangential crack (R;) (slabs 01, 02
and 03).

*) Since the radial yield moment M, , for slab 03 is smaller than the cracking moment M, , this
latter moment has been substituted for M, ,, in calculating R, for this slab.

26



mentally determined values. For slab 04 there is no mathematical minimum. In this
case the lowest value of ¢ occurs at R, = 0, which corresponds to the conical surface
found to develop in slab 04 (Fig. 34) and to the fact that the maximum radial moment
in this slab occurs at the centre thereof (Figs. 27 and 30).

With the values obtained for R, the collapse loads d..» can now be calculated
from the formula (1). They are found to differ considerably from the experimentally
determined values (Fig. 40).

For the slabs for which M, , is smaller than M ., p the values thus obtained are even
lower than g, ;. This will readily be understood on considering again the equilibrium
of a sector of the annular part in Fig. 42. Hence we here have the case where aniso-
tropy (o, < w,) results in a different collapse mechanism with a lower collapse load
than in the isotropic case. This means that there is no point in making w, less than w,.

That the slabs do not collapse under the load 4., is due to the fact that with this
manner of loading, too, the moment that can be resisted in the tangential direction
(M) is increased by the effect of membrane forces (Fig. 44).

slab |wt e Mt max/Mtp
01 127 145
02 1136 145
03 1157 144
04 0,606 2,67
1 1078 148
12 1067 148

13A ] 0588 270
138 [ 0557 | 284
14 1102 146
15 hijo,saa 218

Fig. 44. Relationship between N’ and M and the ratio between M max and M, ,.

On replacing M, , in formula (1) by M
Appendix A — we obtain:

~ the calculation of which is given in

Imax

M., R+ R—R
qu3 = My p Ry ,,,;i'mné(‘,il_) 2
(R =RY)

The values of g, ; calculated in this way are listed in the table in Fig. 40. For the slabs
01, 02 and 03 they are found to be in very good agreement with the experimentally
determined values. The percentage increase of 4.3 in relation to g, , is very nearly the
same for the three slabs (~35%).

If the collapse load of slab 04 is calculated in the same way, the value obtained is
too high. The reason for this is that in the above consideration of the problem
M, is assumed to be constant across the width of the outer ring (the conical surface).
If this part extends to the centre of the slab, however, this assumption is not per-
missible. M, will decrease progressively from the edge to the centre of the slab. On the
assumption that at the edge of the slab M, = M,  and at the centre M,=M,=M,,

fmax
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Fig. 45. Parabolic distribution of the tangential moment in slab 04.

and that there is a parabolic distribution between these values (Fig. 45), the follow-
ing expression is obtained for the collapse load:

= M"L-l_ i%x _upt
qu,4 %’_. RZ

The value g, , thus calculated for slab 04, likewise included in the table in Fig. 40, is
found to be in good agreement with the experimentally determined value. The assump-
tion of a parabolic distribution across the slab corresponds suitably to a linear distri-
bution of the tangential normal forces such as occur on deformation of the slab to a
conical surface and to the relation between normal force and the moment that can be
resisted (Fig. 44).

Summary (see Fig. 40)

From this part of the research it therefore emerges that differences in the reinforce-
ment percentages in the tangential and the radial direction can result in a considerable
change in the bending moment distribution after cracking. This may give rise to a
collapse mechanism which differs from that envisaged by Johansen’s elementary
theory for the isotropic slab and which may result in Jower collapse loads.

The membrane action (compression ring), which has the effect of increasing the
moment that can be resisted in the tangential direction, is the reason why higher values
may nevertheless be found for the collapse load.

4 Conclusions

If cracking of the concrete results in a condition in which the flexural rigidity in the
radial direction of the slab differs from that in the tangential direction because the
reinforcement percentages in these directions are different, this may greatly affect the
deflection of the slab. It was found that, for equal quantities of reinforcement per
unit area, the deflection of one slab could be twice as large as that of another. The
deflection was found to be determined more particularly by the tangential reinforce-
ment.

The differences in flexural rigidity may also result in a totally different bending
moment distribution as compared with the isotropic slab, so that very different col-
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lapse mechanisms may ensue. In the case of uniformly distributed load, for example,
it was found in those instances where the radial reinforcement percentage was smaller
than the tangential reinforcement percentage that the deflection surface was not a
conical surface with radial cracks across the entire diameter, but was a truncated cone.
The central part of the slab remained substantially plane, and a circumferential yield
crack developed at the transition to the conical part.

The collapse load associated with this collapse mechanism was lower than that for
the isotropic slab with the same amount of tangential reinforcement. The position of
the yield crack in the circumferential direction depends on the ratio of the tangential
and radial reinforcement percentages.

Although increasing the tangential reinforcement percentage has a favourable
effect on the rigidity of the slab, it should be borne in mind that it is not attended by a
proportional increase in the collapse load, since this trend is affected by the develop-
ment of a different collapse mechanism.

Membrane forces may develop with increasing magnitude of the deflection, while a
compression ring is formed in the outer part of the slab. As a result of the internal
compressive forces the tangential moments that can be resisted in this zone may be
considerably greater than the full plastic moment. This is the reason why, in the case
of uniformly distributed load, the collapse loads were found to be considerably higher
than those obtained by calculation with full plastic moments. A simple procedure for
calculating this increase in collapse load was established.

In the case of the slab subject to point load it was found that the development of a
compression ring could give rise to a different collapse mechanism, in connection
with which a crack in the circumferential direction was formed on the loaded side of
the slab in consequence of the tensile strength of the concrete being exceeded. The
resulting increase in the collapse load depended on the magnitude of the negative
radial cracking moment and was therefore not difficult to determine.

In the tests with point loads it was also found that collapse loads might occur lower
than the values calculated according to the elementary collapse analysis for an iso-
tropic slab with the same amount of tangential reinforcement. The phenomenon of
punching shear played a part here, this being promoted by the very large curvatures
which occur at the centre of the slab and which probably also caused the rotational
capacity to be exceeded.

Concluding remarks

The results of the research reported here give rise to some inferences of more general
scope:

1. Deviation of the reinforcement pattern from isotropy may result in substantially
different deflections (see Figs. 10 and 11, for example).

2. It may also result in collapse mechanisms which are difficult to ascertain, which
are initiated by deviant bending moment distributions, and which may result in
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lower collapse loads than in the case of isotropic slabs with the same amount of
tangential reinforcement.

3. Concentrated loads may give rise to sudden failure at a load which is smaller
than the collapse load according to the yield-line theory.

4. Tn some cases it is possible to assess the favourable effect of membrane action in a
simple way, without second-order analysis.
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Appendix A: Data of the slabs

point load
slab hlot ht hr ¢t ¢r dt dr Oge.t Ea-t Oge.r Ea,r
11 26,1 23,0 21,1 1,99 1,99 3,02 5,0 0,476  199,3 0,476 199,3
12 26,2 23,3 21,62 1,99 1,385 2,89 4,58 0,476 199,3 0,472  200,0
13A 25,6 20,4 22,25 1,385 1,99 513 3,45 0,472 200,0 0,476 199,3
13B 26,0 21,6 23,32 1,385 1,99 4,36 2,68 0,438 188,0 0,476 199,3
14 25,5 22,5 21,12 1,99 1,01 2,92 4,42 0,476  199,3 0,281 199,3
15 26,1 21,95 21,95 1,556, 1,55¢, 4,15%) 4,15*) 0,469 199,3 0,469 199,3
mm kN/mm?
*) mean value for dx and dy
uniformly distributed load
slab hlol ht hr ¢t ¢7‘ dt dr Oaet Ea-t Oae.r Ea-r
01 25,6 22,1 20,08 1,99 1,99 3,53 5,52 0,476  199,3 0,476 199,3
02 25,63 21,9 20,23 1,99 1,385 3,72 5,40 0,476  199,3 0,472 200,0
03 25,49 21,6 20,01 1,99 1,01 3,91 5,40 0,476  199,3 0,281 199,3
04 25,2 19,9 21,57 1,385 1,99 5,31 3,63 0,472 200,0 0,476 199,3
mm kN/mm?
<
point load
slab Wy % W, % Ml,‘p M?‘-ﬂ Mr‘s Mt,mux Pexp Pu-l Pu,l Pu:punching shear
11 1,078 1,179 2518 2301 681 3720 15,2 15,8 20,1 15,2
12 1,067 0,557 2560 1183 686 3785 14,5 16,1 20,4 15,2
13A° 0,588 1,123 1110 2448 655 2003 10,5 7,0 11,1 14,8
13B 0,557 1,067 1099 2565 676 3124 10,8 6,9 11,1 15,1
14 1,102 0,304 2460 377 650 3582 14,0 15,5 19,5 14,8
15 0,688%) 0,688*) 1477 1484 681 3215 12,7 9,3 13,6 15,2
N { kN
*) wx and wy P, =2 n-M,,,,
M, : negatieve bending moment; P, =2n(M,,+M,,)
reinforcement neglected ; /
1 h
Op = 6 N/mmz Upunching shear 7t<75 + %) .—(ZOL. R4
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uniformly distributed load

Slab wt% wfr% Mt.p Mr,p Mfr,s Mt,max qexp qu,l qu.z qu,s qu,4

01 1,127 1,239 2422 2181 - 3520 79 58 57 79 -
02 1,136 0,596 239 1106 - 3490 63 58 48 63 -
03 1,157 032 2370 355 661 3420 50 57 36 49 -
04 0606 1,1535 1087 2357 - 2910 53 26 26 70 53
N kN/m? |
<« |
slab Ryeoo Ri = 6:M,,
u, 2
() 91,5 R
02 280 232 . _
03 280 288 oz = M r-nﬁf%/’w(f Ry)
04 - 0 LR’—RY)
(mm)  (mm) s = M,, R +M,, (R—R,)
u,
HR®—RY)
0 Mt,p + %(tha,‘ - lwt,p)
(Ju,4 =

RZ

The effect of normal (compressive) stresses on the moment that can be resisted

If no resultant normal force is acting on a section, the magnitude of the yield moment
in the radial or the tangential direction can be deduced from considerations of equi-
librium.

The plastic moment per unit length is:

M, = - h06,(h—%x) (N)

Note: x = depth of concrete compressive zone
o,, = 0.8 x average cube strength

For the various slabs this moment had been calculated both in the radial (M, ,) and
in the tangential direction (M, ,) (see page 31 and 32).

In consequence of compressive stresses on the section the moment to be transmitted
will be increased. In general, the relationship between a normal force and the moment
that can be resisted will be as shown in Fig. 44, where this relationship has been plotted
for a few cases.

In cases where higher reinforcement percentages (o = approx. 17;) were provided
there also occurred yielding of the reinforcement at M,,,,. With lower percentages
(w = approx. 0.5%) there was no yielding of the reinforcement at M ,,,.

For the calculation of M, it is necessary to base oneself on the maximum com-
pressive strain of the concrete &,,. From observations on test specimens it was found
that ¢, = 0.2% (see Appendix B). The relationship between N’ and M can readily
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Fig. 46. Determination of M (in relation to middle plane) and the associated N’ (normal force).

be determined by calculating the magnitude of N’ and M’, basing oneself on a partic-
ular state of deformation (see Fig. 46).

The resultant moment has been calculated in relation to the middle plane of the
slab.

For given slab dimensions and material properties it is, for each slab, possible to
calculate the maximum moment in the tangential direction (page 31 and 32).

Values ranging from 1.4 to 2.8, depending on the reinforcement percentage w, in
the slabs, were found for the ratio M,/ M, , (Fig. 44).
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Appendix B: Materials

Concrete

It was endeavoured to make a high-strength concrete. A high compressive strength
was desired in order to ensure that the steel, not the concrete, would be the deciding
factor for collapse of the slab.

Composition

The quantities per litre, allowing for an air content of 1.5%, are as follows:

ENCI Portland cement A 385 N
water 1.925 N
aggregate 17.567 N
total 23.342 N

The water/cement ratio is 0.5. The grading curve of the aggregate is presented in
Fig. 47.
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Fig. 47. Grading curve.

Test specimens

Prisms with dimensions of 40 x 40 x 160 mm were made as test specimens for deter-
mining the properties of the concrete. Like the model slabs, these specimens were
concreted in two layers, each layer being compacted by vibration on a vibrating table.
They were then covered with damp cloths and demoulded after three days. On removal
from the moulds, the specimens and the model slabs were stored in an airconditioned
room where a relative humidity of 90% and a temperature of 20°C was maintained;
after two weeks in these conditions the models and the test specimens were stored for
a further two weeks in the testing laboratory itself, where they were tested after a
hardening period of 28 days in total. Six prisms were concreted along with each slab.
Of these six specimens, two were used for determining the flexural strength (o,
splitting strength (o,,) and cube strength (0.,), two for determining the prism (com-
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pressing strength (¢),) and two for determining the stress-strain relationship(o—e-
diagram).

The flexural tensile strength was determined by means of a three-point bending test.
The halves of the specimens subjected to this test were then used for determining
the splitting strength and the cube strength (Fig. 48).

The splitting strength was determined by means of the Brazilian splitting test, using
3 mm wide strips inserted between the specimen and the platens of the press (Fig. 48).
The rate of loading was 50 N/sec.

For determining the cube strength the load was applied direct through the platens
(40 x40 mm) of the press to the specimens (Fig. 48), as was also done in determining
the prism strength and the stress-strain diagram. The rate of loading applied in de-
termining the prism strength and the cube strength was 500 N/sec.

The average stress-strain diagram which was used in the calculations is indicated
in Fig. 49.

50~

R N
GN/mmzz'Oi 7<‘>77 — -
f«— 150—’;—@—'7—' T . (e
S — r — ) S—
40mm *P P
s P : ke ( o "" .
.- A P fp e €%0

Fig. 48. Fig. 49. Average measured stress-strain diagram

of the concrete.
The following average values were found for the materal constants of the concrete
and used in the calculations:

flexural strength 6, = 6 N/mm?

modulus of elasticity at origin of stress-strain diagram E;, = 34400 N/mm?
strain corresponding to maximum compressive stress
in concrete &y = 0.2%

cube (compressive) strength o, = 50 N/mm?
splitting (tensile) strength o, =42 N/mm?
prism (compressive) strength o, =37 N/mm?
Steel (see Fig. 50).

mm |#kmm _grade Eq kNfyr’|%e Nimif] %ar N € in %

2199 |FoB40 AW-NR] 1993 476 568 2

16_|155_|FeB40 HW-NR| 199.3 469 573 20

141385 |Fe B40 HW-NR| 2000 472 566 262

14 11385 |Fe B40 HK-NR 188,0 438 587 24

1 [101 |FeB24 AW-NL| - 281 396 57

Fig. 50. Data of the various grades of reinforcing steel.
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Appendix C: Formulas for cylindrical orthotropic slabs

The derivation of the equation for the cylindrical orthotropic slab is based on the usual

assumptions:

— plane sections remain plane and perpendicular to the middle plane;
_ the deformations are small in relation to the dimensions of the slab;

— Hooke’s law is valid.

Figs. 13 and 51 show the state of stress in an element of the slab.
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Fig. 51. Forces acting on a slab element.

Because of axial symmetry:

g =0
M, =0
0 d . . .
7 —ao " is the only independent variable
?*w  1dw *w  dw
= and —=-"—
t rdr or r

Deformation equations

Bending moments per unit length:

2
Mr= —-kr<M + th_.d_.‘,g>
dr? rdr

2
M, = ._k,<1d_w+v,4.g>
rdr dr
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k, and k, are flexural rigidities of the slab in the radial and the tangential direction:

k. = _E'_ilil_ ¢, = __Etﬁhé_‘
T12(1 =) C12(1—v, )

Equilibrium conditions

From a consideration of the equilibrium of an element of the slab (Figs. 13 and 51)
the following expressions are obtained:

dM, 1
gr =g, "+ (M, — M) (C3)
and
v, dg,
2y T+ () =0 (C4)

Equation for the siab
Substitution of (C3) into (C4) gives:

1 1dM, 1 d M, d*M, d M
SM - = o M+ () (C5)
re r dr r dr r dr dr r

Substitution of the deformation equations (C1) and (C2) into the equilibrium equation
(C5) gives, in combination with Betti’s reciprocity relationship (k, v, =k,"v,), the
equation for the slab:

] d*w 2 d3w 717 7d727w 1 dw
kel —+=-—)—k|=——-—-"2)=qgr
r <dr4 rdr? ) ' <r2 dr* 3 dr> ()

General solution of the slab equation

The equation has been solved by G. F. Carrier (ref. [1]): particular integral:

_ anrt
(72k,—8k,)

the reduced equation (obtained by replacing the right-hand side by 0) has been solved
by the method of changing the variables:

t =lInr
q(t) = e~ -w(r)
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The general solution of the slab equation thus becomes:

(@ =V Jk,):

N A2 Lodta L1-a ‘I(")"'4_
Lw(r)—A r*+B+C-r "*+D-¥ +——(72k,—8k,)

The constants A, B, C and D are obtained from the boundary conditions of the slab.
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