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NON-LINEAR ANALYSIS OF CONCRETE MEMBERS

Summary

This report deals with the calculation of the ultimate load of an axially compressed
concrete member. It does not matter whether the member is straight or circular
curved. Attention is mainly devoted to geometrical non-linearity (2nd order effect)
and to physical non-linearity. The latter phenomenon is caused by the dependence
of the bending stiffness on the state of load. The methods described offer a rather
easy way of calculating the ultimate load. They are illustrated by two examples.
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Notation
(additional symbols of the appendices are not given here)
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width of member

eccentricity of the normal load or deflection
initial deflection

second order deflection

compressive strength of concrete

yield stress of reinforcement steel

length of member

number of half waves of the deflected shape
relative normal force N/bif;,

uniform pressure

total thickness of member

cross-sectional area of reinforcement
modulus of elasticity

modulus of elasticity of concrete

modulus of elasticity of concrete at the origin
geometrical factor

moment of inertia

bending moment

bending moment (1st order)

bending moment (2nd order)

normal force

actual normal force

critical normal force

maximum normal force

ultimate normal force

radius

bending stiffness

safety margin

steel strain

concrete compressive strain

ultimate compressive strain

half the aperture of an arch

parameter, depending on 0

curvature

curvature (2nd order)

Poisson’s ratio

steel stress

concrete compressive stress

concrete compressive stress in extreme fibre
parameter, depending on //R, t/R and m



Non-linear analysis of concrete members

1 Introduction

In calculating bending moments and deflections of an axially compressed concrete
member we can, in general, distinguish between two cases. In the first case the bending
moments are supposed not to be influenced by the deflections. This case is mostly
referred to as ““1st order”. In the second case, referred to as ““2nd order”, the bending
moments depend, apart from the axial load, on the magnitude of the deflections. This
may be called ‘‘geometrical non-linear” too.

The considerations concerning 1st and 2nd order effects apply not only to simple
columns, but also to circular curved beams or plates (rings and shells) with uniform
radial load. In these cases there will occur a tangential force in the curved member
which is quite analogous to the normal force in a straight member.

If the bending stiffness of the member is a constant, we may state that the 2nd
order analysis is not a serious problem in most cases. But there could be difficulties,
for example shells with varying edge conditions.

This report deals mainly with the complication that the bending stiffness of
(reinforced) concrete is not a constant. The bending stiffness S is defined here as the
bending moment M divided by the appropriate curvature ». A typical M — x relation
is given in Fig. 1.

In the following, a realistic approach to the 2nd order analysis is given. Two
slightly different methods have been distinguished. The first is based on the assump-
tion of an uncracked cross-section (Chapter 3). In Chapter 4 a more general method
is developed. Both methods make use of the so-called critical load which is first
dealt with in Chapter 2.

Fig. 1. Moment-curvature relation, typical.

2 Critical load

The critical load is defined as the load at which deflections, and therefore bending
moments, increase indefinitely and when these deflections are initiated by an infinitely
small lateral deflection of the member. For example the critical load N,, of an axially
compressed member with length / and constant stiffness S(= EI) is given by:



The critical load can be considered as a hypothetical one, for the initial deflection,
which cannot be avoided in practice, causes an ultimate load N, always less than
N,,. Nevertheless the magnitude of N, is of interest for it greatly influences the
ultimate load N,.

The critical load can be written as:

N, =S-G (1)

cr

where G is a geometrical factor with the dimension of one per square unit length

(1/m?).

To obtain some idea of G, some specific cases are mentioned. See also Figs. 2 to 5.
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(1-¥2)R2

Ner =S.G (=tangential force)

pop=Ner 35
TR T ov)R2

Fig. 2. Critical load of a hinged column. Fig. 3. Critical load of an infinitely long cylinder
(cross-section shown).
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R

n = function of @

Per =

Fig. 4. Critical load of an infinitely long cylinder segment (cross-sections shown).
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m = number of half waves of half the circumference
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Fig. 5. Critical load of a cylinder with length / clamped at the edges.



— For a hinged column, length /, axially loaded:

2
T

2

— For an infinitely long cylinder with radius R under uniform radial pressure:

3
(1—v*)R?

G

— For an infinitely long cylinder segment with radius R and aperture 20, under
radial pressure:

_ 3
(1—v*)R?

where 7 is a function of the aperture.

— For a cylinder with length /, radius R, thickness ¢, uniformly loaded:

_ 120
(1—=v?)t?

where ¢ is a function of //R, /R and the number m of waves of the deflected shape.

These expressions can be found in several well-known books on elastic stability, for
example Timoshenko and Gere’s “Theory of elastic stability”.*

A very comprehensive collection of N,-values is given in ‘““Handbook of structural
stability”. **

In the following treatment of the subject it is assumed that the geometrical factor
G is known. For the cases mentioned above the parameters # and ¢ are given in
Appendix A.

3 The uncracked cross-section

Assuming an uncracked section and neglecting possible reinforcement, the bending
stiffness depends only on the (variable) modulus of elasticity E, of the concrete and
on the constant moment of inertia I.

According to the conventional approach, we have:

S=E, I @

* Int. Stud. Edition, McGraw-Hill, Tokyo.
** Editor: Column Research Committee of Japan; Corona Publishing Company Ltd., Tokyo.



2N4. degree parabola
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Fig. 6. Stress-strain diagram adopted for concrete.

For the stress-strain relation of concrete a 2nd degree parabola is adopted — Fig. 6.
This relation can be written as:

’ ’ ’
O-C 86 80
= (2 - ©)
fC 8“ 814
0. = compressive stress of concrete
f. = compressive strength of concrete

¢, = compressive strain of concrete
¢, = ultimate strain of concrete

where

The modulus of elasticity is defined as the tangent modulus:

Eﬂ:";'v:gfie(l_‘?ﬁ)

’ J !
de, &, €

u

At the origin of the stress-strain relation:

We can now write:

EC=EC.,<1—‘”’—f>=Ea,J1—Eg 4)
’ 7

u

It is emphasized that expression (4) is mainly introduced to account for a decreasing
E_-modulus with increasing stress level. For a given stress level however, the E,-
modulus is assumed to be a constant value across the section. In other words, there
exists a linear stress distribution across the section.

Consider a rectangular section b-¢. The section is loaded by a normal force N
and a 1st order moment M, = N-e,, where e, is the initial deflection. The Ist order
compressive stress in the extreme fibre will be:



o, = —+—=—
bt W bt bt* bt t

M N N
/_N 0_N+6‘ eo=_<1+6_@> (5)
It is well-known that deflections and bending moments increase until certain limiting
values are reached, belonging to a stable equilibrium (2nd order effect). These limiting
values can be expressed as:

1

e and Mt = MO I_—W (6)

1
t= T N/N,,

where ¢ denotes the final value.

For a derivation of e, and M,, see Appendix B.

Note that these expressions are based on the assumption that all sections of the
considered member have the same bending stiffness.

The extreme fibre stress will be:

(= 0
bt bt? bt

Using:

Econ\/i—%f and N, =(E.I)-G

the bending stiffness is realistically taken into account.

But what concrete stress o should be used in the expression of E,?

A safe approximation is to use the maximum compressive stress that occurs
anywhere in the member. Then we get the lowest, thus safe values of E, and N,,.

It is more likely that the mean stress in the section should be taken. We may assume
that the overall behaviour depends more on some mean bending stiffness rather
than on a local low value.

In Appendix C it is deduced that a realistic value of E, can be based on the stress
at the centroidal axis corresponding to a parabolic stress distribution across the
section, see Fig. 7.

et (2Nd order)
et

¢ (15torder)
N/ bt |

i
| [ N

~} < “parabolic stress distribution
| 4 \‘\
[ stress to be taken for a
‘ y realistic E¢ -value

—» Gt

I l
\ |
L L
| \
\ |
1 |

Fig. 7. Linear and parabolic stress distributions.



The appropriate expression (Eq. (13) of Appendix C) depends on N/btf; and the
relative eccentricity e/¢ of the normal force with respect to the centroidal axis. That
expression is not a very simple one. But for the purpose of calculating the ultimate
load, in the appendix a very good approximation is derived, stating:

s N
E,=E, \/ 3 (1 bt_ﬂ) (3)

which is independent of the eccentricity!
On the assumption that the ultimate load N, is reached when o, equals the concrete
compressive strength f7, N, can be taken from:

. Ny K2 :
f”‘F?<1+6 i I—Nu/NC,> ©)

N”ZECOIG\/%(I _ N )
bt-f.

This requires the solution of a 3rd degree equation in N,. The solution for N, can
very conveniently be done graphically by calculating values of a., as a function of
some values of N.

The method is illustrated by the following example. Given a rectangular cross-
section with:

where

b =1.00m

t =055m

E,, = 29000 N/mm?
! =40 N/mm?

G =68.4-10"31/m?

eo =003 m

N,.= 6 MN (actual load)

What is the safety margin y against failure?
The 1st order stress, according to Eq. (5) is:

, N 003\ .. . i
% = 1.00-0.55 <1+6 0.55)‘2'41 N MN/m” (= N/mm") (10a)

Modulus of elasticity, according to Eq. (8):

E, = 29000 \/ 3 (1 - %) MN/m?

10



Critical load:

N = (EJd)G = E, 151G

N, =27.54 \/% (1

Second order stress, according to Eq. (7):

/ 0.03
w*f_f—c+6a§itmﬁﬁ

Some calculated values are listed below.

- E) MN

22

(10b)

(10c)

N 0"0 Ncr D'/ct
(MN) (N/mm?) (MN) (N/mm?)
6 14.5 20.3 16.0
8 19.3 19.0 22.8
10 24.1 17.6 31.9
11 26.6 16.9 38.8
12 29.0 16.1 50.0

*

Plotting o, as a function of N, we obtain Fig. 8. The vertical line, indicated by N.,,
is the asymptote of the calculated relation. Its value follows from the condition
N = N.,. For this specific case, from Eq. (10b):

N!, =27.54V0.75—0.75N.,/22 or N., =142 MN

45

intersection
“J LR Y
35- !
&4
30] é"y ] |
T 2 |
£ YA
()
= 20}- ‘_'}o*6 ] l
_E N 1 l
g 15}~ i
.bu J ’
? 10 ‘ \
s |
‘ ! J. il Il 1 F— Il
0 2 4 6 8 1012 'lf.”
Ny Ner

————> N [MN]

Fig. 8. Determination of N,,.
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The intersection of the ¢,,— N relation with the concrete strength f; =40 N/mm?
gives N, = 11.1 MN.
The safety against failure, defined as the ratio N,/N,,, is:

11.1

This method gives a clear view of what is happening when the load increases. It is
evident that failure is always caused by reaching the concrete strength before the
critical load causes instability, unless the initial deflection is zero. So it is not correct
to define the safety as the ratio Ne/N,.

Because of o/, (minimum) = 2-¢/(mean)—f, = 0.4 N/mm?* (> 0), the condition of
an uncracked section is satisfied. But we can be sure that in the case of a greater
initial deflection the assumption of a non-cracked section is not correct.

4 General method

The determination of the ultimate load in the case of an arbitrary cross-section
(cracked, reinforced) needs a more general method. Such a method is described here.
The M-N-x relations, reflecting all material properties, are assumed to be known.
Furthermore, use is made of the M ,-N, interaction diagram which can be deduced
from the M-N-x relations. Typical diagrams are given in the Figs. 9a and 9b.

An M-N-» diagram gives, at a certain normal load N, the internal relation between
the bending moment and the curvature belonging to the considered section. The
bending stiffness is taken as S = M/x.

It is also possible, as a consequence of the 2nd order effect, to speak of an external
relation between the 2nd order moment M, and the 2nd order curvature x,. This
depends on the geometry of the member.

The external relation is derived from the expression (6):

1
M, =My —————
! ® 1—-N/N,,
sf;\.\'b Ny2
N N=N2x 5 Ny
= x
! @
l Nu1
0 0
—b X o > My
Fig. 9a. Typical M-N-x relations. Fig. 9b. M,—N,, interaction diagram,

12



With N = My/e, and N, = S-G follows:

Mi=Mo™ 123 e, GS

or
M, = Mo(1+M,/e;GS)

By substituting S = M, /x, we get:
M, = My(1+x,/e,G) (11)

Equation (11) gives the external relation between M, and x,.

Both relations must be satisfied to obtain equilibrium. So the desired value of M,
is found by the intersection of the relation M = My(1+ #/e;G) and the given M-
relation.

A typical graph is presented in Fig. 10.

-.0rgi.

=
‘ \V";\ Nmax| -
/ mterr_\al
Mt /> relation 2:_’
external =z
M, (=e) relation T
o\” 0
|
//’
180G, — > Mo, My, My
Fig. 10. Graphical determination of M;. Fig. 11. Graphical determination of Ny,y.

Repeating this procedure for several values of the lst order moment My(= N-ey),
we find a family of N— M, relations. Plotting these relations in the given M,—N,
interaction diagram we readily get the extreme value N,,,, being the load at which
failure is initiated. See Fig. 11.

It is of interest to note that N, at the top of the N— M, curve, corresponds with
the situation where the line of external relation is the tangent line to the M —x curve.
This situation reflects a state of unstable equilibrium. Only values smaller than N,
cause stable equilibrium. Beyond N, equilibrium is not possible. Assuming that N
is gradually increased, a slightly greater value of N, will cause a considerable
increase of the deflection and bending moment until failure occurs at N, equal to
N paxe
The method is illustrated by means of the following example.

The same dimensions and characteristics of the previous example of Chapter 3 are
given. In addition symmetrical reinforcement is considered. Data:

13
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Fig. 12. Stress-strain relations adopted for concrete and steel.
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Fig. 13. Calculated M-N-x diagram.
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Fig. 14. Calculated M, —N,, interaction diagram.



b =1.00m

t =055m
G =68.4-10%/m?
e, =0.03m
N,.=6 MN

E., = 29000 N/mm?
f! =40 N/mm?*

A = A =0.002bt
f, =420 N/mm?

The M-N-x diagrams (Fig. 13) and the M,— N, interaction diagram (Fig. 14) are
calculated by means of a computer. The stress-strain relations of concrete and steel
which are used, are drawn in Fig. 12.

From Fig. 14 follows the failure load N, =12 MN with the corresponding 2nd
order moment M, = 1.1 MN.m. The safety factor is:

It is not surprising that this safety is 8% greater than that found in Chapter 3: the
reinforcement will cause a decrease in the concrete stresses and an increase in the
bending stiffness.

15



APPENDIX A.1

The parameter # as a function of the aperture 2 0
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APPENDIX A.2

Graph of the parameter ¢
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number of buckling waves (small digits)

o =t/R
v =0.2
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APPENDIX B

Determination of e, and M,

. . . . TX
Given a member with length / and deflection e,, = ¢, sin

eox €0

Yai

| ——d

The load N will cause an additional deflection y,. The total deflection becomes

Co . . WX
e, = €gx+ ¥ Which is assumed to be a sine surve. So e, = e,"sin

. X
Ve = €x—€0x = (et_eO)SlnT

J
o - <
<
N /%?‘};\\, N I“f
— [ -—

In general:
2
M, = —E1-90x
dx?

From Eq. (1):

d’y, . mx

—Z = —(e,—ey)—sin—

o (e —eo) 7 sin
So:

2
n° . mx
M, =EI <(e,—e,,)-l—2—-smﬁ>
From the external load:
M,=N-e, = N-e,-sinzrlic

From Egs. (2) and (3):

n?El
(e;—eo) 2 =N-e,
With:
2
n“EI
NC)‘ = lz
follows:

18
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1

“@=CON _NT“1-N/N,

Maximum moment:

M,=N-e, =

1 1
N-eo T=NN. = MoT=NN,.

19



APPENDIX C

Determination of a realistic E_-value
Assumptions

a. Parabolic ¢.-¢, diagram of concrete:

b. Linear strain distribution across the section.
c. All strains remain positive (compression).
d. Reinforcement is neglected.

See also Fig. C-1.

) € G
L 1 1

{ — ! J
SN Y B Y A S v oy

i i ; centroidal

: : # axis

— %

section strains e¢ stresses G
Fig. C-1.

Determination of N and e as functions of the strains

Strains:

’

X
= = (e —2h)
t

Stresses:

! !

€ &

’ ! X X
(% =fc '*, <2 - ,)

8“ 8“

Normal force:

p bt‘ . ’ ’ ’ ’ ’ !
N=|obdx=1% ,gc (3el(e) +&5)— (e} +&5)* +eesr}

) &,
Distance a:

t

[obxdx

=9
N
With
bt*f

< {4e; (e} +2e5)— (e + €p)* — 28'22}

r2
u

t
fobxdx =5
0

follows:

_ . (deilen +265) — (&) + )" — 267

a
(3ey(e} +5) — () +85)° +eleh}

20
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Eccentricity: e = 4t—a or:

{26,(e] — &) — €\ +e3°

t.
{(3eu(e] +e5) — (e +&5)° +e185}

©)

P

e =

With the Eqgs. (3) and (5) the load N and the eccentricity e are known as functions
of the strains. Because of M = N-e the bending moment M will be:

btz C,' ’ ’ 7 ’ 14
M= T‘f'?f—@l—ez)(zsu—sl—sz) ©)

Capacity of the cross-section
This capacity will be reached when &} =¢,. Substituting ¢} =¢, in Eq. (5) we find:
e =1t €2 —2ee, +ey
2/ +2ele, — &y

Solution of &5:

, , 12e
& =8, {1 - \/Zéjl_‘t—} (7

Substitution of Eq. (7) into Eq. (3) gives:

N(=N)=bif;— ®)
L+ =

Bending stiffness and modulus of elasticity

The curvature is:

gi—e, M
Y S
So:
M-t
S= ’ ’
81_62

From Eq. (6) follows:

2 ! ’ ’
s = b2 (1 = 812?’2> ©)

u

u

21



Because of the assumption of an uncracked section, we may state S = E_I, where

I =501
With
2f,

&

=E

co
u

Eq. (9) becomes:

Ec = Eco <1 - E)
&

where & = 1(¢} +¢,) = mean strain (at centroidal axis).

From Eq. (2) can be derived:

So:

(10)

(10)

where 0., = concrete compressive stress at the centroidal axis (parabolic stress

distribution).
Using the notation:

we have to determine « as a function of N and e.

Putting &, +¢&, = 2& and ¢, —e, = xt, it follows &}&; = &% — (1»t)*. Substitution into

Eqgs. (3) and (5) gives:

t ’

N = %b J: < {6e,E— 38" — (4nt)*}
814

e= 1t 2(3u;£)%t !
6¢,&— 38" — (3n1)

Using
a=2, /3=%—t and n=—1i.
& 2e, bif.

22



we get:

3n = 60— 3a? — B2
3n% = B1-2)
Solution of these equations gives:

a=1—\/%(1—;1)[1+\/1—12<1_'in)2<tf>2] (11)

e

3n7
(12)

The realistic modulus of elasticity is thus given by:

LEE -E, \/%(1 —n) [1 + J1 ~12 (:—J <-:f>2] (13)

Furthermore, there are two conditions to be satisfied: ¢} < ¢, and 0 < &5 < &).
For the boundary conditions can easily be derived:

12e
—1_f=1_1 e [
a=1—-f=1 Z\/4e+t if &\ =¢, (14)
and
a=p=""% i g-o0 (15)
t—4e
So, with EE:O =1—a:
B (e .,
Eco —7\/@ lf 81—-81, (16)
(17)

E, 2e . -
E. =14 if =0

The Egs. (13), (16) and (17) are graphically presented in Fig. C-2.
23



10 $ ns0 -
: 01 | >
sk 02 e ___ 5
03 ;S .
c 08 04 7__
= o [ A —— >
co W
06 TTe——
081 A =~
07 =< AN
osf- - N *
08
04 < !
N\
N=i
3= \ '
N ey ey €=0
02 eq.(16) eq.(17)
01

1 1 1 1 1 1 1 1 1 1 1 1 l
0 002 0.64 O,CI)S 008 010 012 014 016 018 020 022 024 026 028 030

_,1:_

Fig. C-2. EE,, as a function of n(= N/btf,) and e/t.

Modulus of elasticity at ultimate (¢} = ¢,)

From the condition &) =¢, it has been found that 1—a=pf. So, with Eq. (12)
follows:

1—a=\/3n§ (18)

The modulus of elasticity at ultimate is now found by equating Eq. (13) to Eq.
(18). Thus:
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From this expression:

EC=Eco-%\/§'\/1——n=Eco\/%<1—£,> (19)

In Eq. (19) the modulus of elasticity is expressed as a function of the relative
normal force n(= N/btf.) and independent of the eccentricity. This expression is
easier to use than Eq. (13) and gives the correct E -value when &; = ¢;. Eq. (19) is
recommended when calculating the capacity (or N,) of the cross-section.
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