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A concrete beam reinforced with bars and
steel fibres in pure bending
Prof. Dr.-Ing. H. W. Reinhardt

1 Introduction

In a bar- and steel-fibre-reinforced concrete beam all materials involved contribute to
the load bearing capacity of the cross-section. Bar and fibre reinforcement provide the
tensile strength, whereas the concrete is responsible for the compressive force. The
stress distribution depends on the mechanical properties of the materials. In regard to
the strain distribution the well-known assumption is made that the strain distribution is
linear [Navier].

This assumption is correct in the uncracked stage but becomes an approximation in
the cracked stage. For the sake of simplicity it will be used for both stages.

Using this assumption it is a question of the elastic moduli which determines the
stress distribution in the uncracked stage. After the tensile zone of the beam has been
cracked, the bond properties of the reinforcing bars, the pull-out behaviour of the fibres
and the stress-strain diagram of steel and concrete govern the deflection behaviour and
the bearing capacity as well.

In the following sections, three cases will be discussed: the linear elastic cracked
stage, the non-linear elastic cracked stage and the non-linear elastic plastic cracked
stage. In all cases it is assumed that the compression zone of the beam does not fail. The
purpose of this chapter is to establish rather simple formulas for the analysis of beam
test results or to show how fibres contribute to the load bearing capacity of a bar-reinfor-
ced beam.

2 The linear elastic cracked stage

In this stage concrete in compression and bar reinforcement in tension are supposed to
exhibit linear elastic behaviour with the elastic moduli E. and E;, respectively. The
stress-strain diagram of the fibre-reinforced concrete in tension is modelled by a rigid
plastic behaviour according to Fig. 1. The “yield stress” o, is at this moment not yet
known, but it will be determined in experimental investigation. It is thought to be a

€

Fig. 1. Rigid-plastic behaviour as assumed for fibre reinforced concrete in tension.
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Fig. 2. Strain and stress distribution in a cross-section.

fraction of the tensile strength of the fibre concrete. This material schematization is an
approximation of the real cracking behaviour which depends strongly on the amount of
fibres, the type, the geometry, and the distribution of the fibres [Hannant 1978]. But for
concrete mixes which are workable and useful for technical purposes, this rigid plastic
approximation is justified. Experimental results [Shah et al., 1978] confirm this state-
ment.

The tension stiffening effect of the concrete in the tensile zone will not be considered
separately. It is assumed to be already covered by the rigid plastic behaviour of the fibre
concrete. Using the materials properties as mentioned above, the strain and stress dis-
tribution in a rectangular cross-section becomes as follows, Fig. 2.

The upper strain ¢ leads to a compressive stress g; whereas the lower strain leads to a
tensile stress o, in the concrete. Because of the relation of Fig. 1, the tensile stress block
is constant over the height of the tensile zone. The stress in the bar-reinforcement fol-
lows from the strain and the geometry.

The acting forces in the cross-section are as follows:

- compressive force C=}bxEe (1)
- tensile forces T.=b(h— x)0, 2
T.=A[E.e, 3)

with constant elastic moduli E, and E;.
The steel strain ¢ and the height x of the compressive zone can be derived from Fig.
2 and become

C
ES = (1 — E) (82 — 81) + & (4)
and
X= p— &)
where ¢; is a negative and ¢, is a positive strain.
The equilibrium of forces demands
C+T.+T,=0 (6)
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Using egs. (1) through (5) and inserting reinforcement ratio p = A,/b - h, eq. (6) becomes

1_d EC+[1— i ]Uct+pEs[(1—%)(82—81)+81:I=0 @)

5 & — & & — &
Assumed, that in a test program the quantities E,, E;, p, ¢, hare given and the top and

bottom strains ¢, and ¢, have been measured, then the tensile stress in the fibre concrete

can be calculated.
Another relation which must also hold true is the equilibrium of the external and

internal moment:

Mex = Mnl (8)
With the geometry of Fig. 2 M, becomes
h—x x X
Mnl:Tc h"T_g +T:v h—C—§ (9)

Usings eqs. (2) through (5) the moment equilibrium gets the form

M.y g 11 g [4 N 1 g
Lex o, -2 E |[1=2) (e,— A=) =2
b o — & [2+6 & — 82] TP [( h) (2 =)+ El] [( h) 36— 6’2] (10)

This relation allows calculation of the tensile stress o, if M.y, E;, b, ¢, h, and p are given
and the strains ¢ and ¢, have been measured. Contrary to eq. (7) the knowledge of the
elastic modulus of concrete is not required. In fact, the eqs. (7) and (10) are independent
of each other, which makes it possible to calculate another quantity or to drop one of the
measurements.

This is for instance the case if the surface strains are not measured, but instead of
these only the mid span deflection is determined in the experiment. For the mid span
deflection in a pure bending zone the well-known expressions are valid with the nota-
tion of Fig. 3.

——t

circle with
radius r

Fig. 3. Deflection of a pure bending zone.

The curvature is

/ &f a1

=T

which becomes for 4/ < /*

¥ (12)
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On the other hand, the curvature is in terms of strains

& — &

K=—"7 (13)
Inserting eq. (13) into (7) the equilibrium of forces becomes
l8—‘2156_[1+£ 0 — pE[(h— K+ &]=0 (14)
2 kh Kh)
Similarly eq. (10) changes to
]I:—i:—;=ac,5‘hx—;8—‘ é—é%}+pEs[(h—c)K+ o] [(1—%]%%] (15)

With knowledge of M.y, E., E,, b, h, p, and kit is possible to solve this set of equations in
order to get the tensile stress o, and the compression strain ¢;. The way of solution is
enclosed in the Appendix.

3 The non-linear elastic cracked stage

Up till now the concrete (in compression) and steel were assumed to show a linear elas-
tic behaviour. In fact, this is true up to approximately a third of the concrete strength.
Beyond this limit the g-¢-line is curved. Fig. 4 shows the strain and stress distribution
with the difference from Fig. 2 that the distance e, of the compressive force is no longer
1x but depends on the shape of the o-e-diagram of concrete.

E1 ) ,
7 G ¢
VN A
h
<+ T
*2
€s . T s

€2

Fig. 4. Non-linear elastic cracked stage.

Eq. (7) can be written as

Sfla) + [1 - } Ou+ PE; [h%cj (62— &) + el}= 0 (16)

&g — & &g — &

f(&) can be taken from graphs or formulas [Leonhardt, 1973]. For the linear case it is ;E.
and for a parabolic o-e-line it becomes 3E.—,).
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Fig. 5. Non-linear compressive stress distribution.

Eq. (10). must also be adjusted to the new center of gravity. With the coefficients k
and k,, according to Fig. 5, eq. (15) becomes

M, 5 1 & c ( c) &
Mex _, 8 11 4 +0E |[1=S) (=) + a1 |- |[1=5) = & 17
bt~ e [2 Le —82] P [( h) (=) el] [ W e 17

In this relation k; =} — ky. For the linear case, k; = }; for the parabolic shape of the o-¢-
line k, = 3. If k is known instead of ¢, and ¢, the same procedure can be applied as in part 2.

4 The non-linear elastic plastic cracked stage

If the stress in'the reinforcing steel reaches the yield point the elastic stage changes into
the plastic stage. All equations derived until now can be maintained if the modulus of
elasticity of steel E; is correctly interpreted. Fig. 6 illustrates that E is a constant value
up to the yield point and starts to be a variable beyond this point. That means that E
depends on the state of strain and the type of steel used.

2 cold rolled steel
o| yield
points /
. / ild steel
/ 77
/
/s
/ s
7/
/ /
'/ //
/// arctanEg,
arctan Eg, €

Fig. 6. Definition of E, in the post yield stage.

5 Experimental verification

In the test program which will be described further in this issue of HERON, static bend-
ing tests have been carried out on fibre- and bar-reinforced concrete beams using three
types of fibres with three different amounts of fibres. Also three different amounts of
bar reinforcement were used representing a minimum, a medium and a high rein-
forcement ratio. The cylinder strength of the concrete was about 40 N/mm? and the

elastic modulus of the concrete has a value of about 26-10° N/mm?.
From the test results the following fictitious tensile stresses in the concrete have been

calculated (pl/d= volume aspect ratio with pvol.% of fibres, / length of the fibres, d
diameter of the fibres):
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Table 1. Tensile stress in fibre concrete as calculated.

Type of fibre p 0,, in N/mm?
pl/d% % uncracked cracked
straight 0.17 1.12 2.20
76 0.75 1.15 2.54
2.09 1.22 2.86
hooked 0.17 0.87 2.99
69 0.75 - 1.84
2.09 0.85 1.41
paddled 0.17 0.67 2.90
96 0.75 - 2.25
2.09 0.76 1.47

From the results [Reinhardt, 1978] it could clearly be distinguished between the un-
cracked and the cracked stage. In the uncracked stage the calculated tensile concrete
stress is much less than in the cracked stage. This can be interpreted easily by the fact
that the outmost fibre only reaches a strain of 0.25%o, which means that the assumed
stress distribution is not quite correct. A triangular distribution in the tensile zone
would be a better approach.

When cracks are formed and the tensile strain reaches values up to 2%, the assumed
stress distribution definitely corresponds much closer with the real behaviour. In this
case, the calculated tensile stress is equal to 100% of the uniaxial tensile strength for the
straight fibres and 85% of the uniaxial tensile strength of the concrete with hooked and
paddled fibres.

6 Conclusions

A simple model has been presented by which account can be taken of the fibre contri-
bution in a bar-reinforced beam subjected to pure bending. Comparing experimental
and theoretical results it turned out that for straight fibres 100% of the uniaxial tensile
strength and for hooked and paddled fibres 85% of the uniaxial strength can be used to
advantage in the calculation of the load bearing capacity of a beam.
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8 Appendix
Determination of ¢ and o, from x only

The two relevant equations are

2
€] &1
p Sf(&1) — [1 + _Kh} 0u—pPE[(h— )k +&]=0 (Al)
kh+ & [1 & c (5] M.,
0 AN B S (h— I AL B
Ot h |:2 1 K/’l:l+p [( C)K+ 81] [( h)+ 3 Kh:l th 0 (A2)

Isolate o, in eq. (A1)

(A3)

Pl pe» Sf(&1) = pE(h— )k + &]

Replace o, in eq. (A2) by right hand side of eq. (A3)
1 &)
[5 —h —h]
& 1 Mex

+PE[(h—r+ ] [(T) R e

% Sf(&r) — pEJ(h— Kk + el]’ +

=0 (A4)

Rearrange eq. (A4) making use of k=3 —k;

k 1 1 pE; [ h—
1/(e) & [ f(81)+—p ]8]24- —wE, +3pE; c] &+

K2h?

+[ PE;
2

Simplify the equation and get

ki f(e 1 h—c¢
1’(21(121) ef+m[f(cl)+pEs]ef+'szs[—1+3 ’ ]814—

2 kh 2 Kh

(h— ok + pE;, ~—— Kk —

N2
(h—29¢) Mex]=0 (AS)

E h—c+(h—c)2 Mo _ o A6
Sl h bh? (A8)
From this cubic equation ¢, can be calculated for a measured . All other quantities like
f(&1), p, E;, h, ¢, My, must be given.
Generally there are three roots of eq. (A6), one of which is the right one. That &, must

be put in eq. (A3) in order to get the contribution of the fibres o,
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