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Notation

F yield function (F=F + F)

I3 part of F which depends solely on o,

F(f) rest of F

0 a function to which the plastic strain increments are perpendicular

Q= F (associative flow)

0= F (non-associative flow)

degree of the function F

hardening modulus

effect of hardening on elasto-plastic strain relation
material constant of the yield function
uniaxial tensile strength

dissipated energy

matrix, the inverse and the transpose
column vector and row vector respectively
. linear elastic stress-strain relation

Ser] elasto-plastic stress-strain relation

TSNS

=

/]~
Ty — —
———

e
I
[ |
| —
3

&j total strain tensor
& elastic strain tensor
& plastic strain tensor
& uniaxial total strain (&, = & + &)
& uniaxial equivalent plastic strain
& uniaxial elastic strain
&, plastic volume strain
oy uniaxial yield stress
%0 initial uniaxial yield stress
o, ultimate uniaxial yield stress
01, 0y, 03 principal stresses
o4 auxiliary quantity (see Appendix B)
C constant in Table B3
Ookt first stress invariant
Ookt = %(01 + 02+ 03)
a second stress invariant
a=Vi{(01— 0)* + (01— 03)7 + (03 — 01)?} = 2sys,
@ third stress invariant
@="sin™! [—i‘/ﬁ{—B] with —lr<@p<in
2 7
where:
J3= (01 = 0ok) (02— Ooks) (03 — Tokr)
d scalar
a interpolation factor (see Appendix C)

k interpolation factor (see Appendix B)



angle in hydrostatic section (see Appendix C)
Kronecker ¢; i=j—»d=1;i+j->0=0
auxiliary quantities in Table 1

friction (see equation Al)

cohesion (see equation A2)



GENERAL DERIVATION OF HARDENING FORMULAS

Summary

The usefulness of the elasto-plastic arithmetical model for describing the behaviour of a
material such as concrete depends to a great extent on the hardening rules to be applied.
Without going into the background of these rules and without expressing a preference,
it will be endeavoured in this article to give a general derivation of the hardening formu-
las, as opposed to the usual procedure of treating the hardening rules for each particular
yield criterion. After the general derivation, the formulas are further developed for a
number of well-known yield criteria in Appendix A. Furthermore, in Appendices B and
C, as in Chapter 4, the possibility of interpolation between different hardening dia-
grams is discussed, without implying that the interpolation methods presented here are
necessarily the most suitable. The need for some form of interpolation must be recog-
nized, however. In many publications this problem is ignored, thus creating the impres-
sion that these are not matters likely to cause any difficulties. Finally, in Appendix D it
is pointed out that the manner in which a particular yield criterion is formulated may
sometimes make arithmetical treatment more difficult.
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General derivation of hardening formulas

1 Introduction

The plastic behaviour of a material such as steel can be described with the elasto-plastic

material model which is characterized by:

1. An initial yield criterion, defining the elastic limit of the material.

2. A flow rule, relating the plastic strain increments to the stresses and stress incre-
ments.

3. A hardening rule, used to establish conditions for subsequent yield from a plastic
state.

For a material such as concrete the above-mentioned characterization is likewise a

good approximation of the actual behaviour, except that, in addition, it is necessary to

pay special attention to cracking and brittle fracture, which can be done by the introduc-

tion of:

4. A tension cut-off criterion.

5. A crush criterion.

The present article is more particularly concerned with point 3, the hardening rule,
while point 1 will also be considered.

With regard to point 2, the flow rule, it is noted only that Drucker’s postulate will be
employed. Points 4 and 5, though of major importance to a satisfactory description of
the behaviour of concrete, will not be considered in this article (for point 4 see, for
example, [8]).

With reference to hardening, a distinction is usually drawn between isotropic harden-
ing (Fig. 1a) and kinematic hardening (Fig. 1b).

transformation yield translation yield surface

& <

9

a) isotropic hardening b) kinematic hardening

Fig. 1. The difference between 1sotropic and kinematic hardening.
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Fig. 2. An example of the fraction model for cyclic loading.

Both methods of description involve some drawbacks, but these can be overcome by
making use of the fraction model [1], known also as the overlay model (for example, see
[5]). In this model a material particle is conceived as being composed of a number of
“fractions” connected in parallel, to each of which can be assigned properties differing
from those of the others. This conception can be visualized with the aid of Fig. 2, re-
lating to a uniaxially loaded bar. The bar is conceived, for example, as composed of
three materials (A, B and C) with ideal elasto-plastic behaviour. It is not difficult to see
that, by virtue of appropriate choice of yield points and moduli of elasticity, the model
can, in a simple manner, be adapted as well as possible to reality.

So, in general we can say that by appropriate choice of the number of fractions and the
properties applicable per fraction, such as the yield condition, the initial yield stress and
the isotropic hardening rule, any material behaviour can be simulated as closely as pos-
sible.

Of course, by choosing just one fraction, we arrive at isotropic hardening for the
whole bar. However, if necessary, with the aid of the fraction model it is possible also to
describe kinematic hardening by making a suitable choice of the number of fractions,
their size and the isotropic hardening rules applied.

This means that, if the fraction model is employed, the kinematic hardening models
of, for example, Prager [2] and Ziegler [3], [4] are no longer needed and that attention
may be confined to the isotropic hardening model. When using the last-mentioned
model, there are two customary ways in which the degree of hardening is rated:

- strain hardening
- work hardening



In this article, strain hardening denotes that the degree of hardening depends on the
second invariant of the plastic strains. By work hardening is understood that the degree
of hardening depends on the dissipated energy. This should be emphatically pointed
out, because in the literature these two approaches are often lumped together as “work
hardening”.

For both methods a general formulation of the hardening rules will now be given wich
is independent of the yield criterion under consideration (provided that this criterion
fulfils certain conditions). Next, fora number of known criteria, the general formulation
is further elaborated to some extent. For convenience of presentation some derivations
are included in appendices to the article. First, however, a chapter will be devoted to
general aspects of the elasto-plastic strain relation.

This article has more particularly been prompted by a study undertaken within the
context of activities of CUR Committee A 26 “Concrete mechanics” [9], with the object
of presenting an overall review of the various constitutive material models as encoun-
tered in the literature.

2 The elasto-plastic stress-strain relation

In general, yield criteria can be written in the following form:

F=f({o}, 0,) — C,0y=0 (1)

With this notation a general derivation of the hardening rule can be given. On introduc-
tion of:

F=/({o}, 2) 2)

and:

F,=C0) 3)
the yield criterion can alternatively be written as follows:

F=F—-F=0 “

The function F, is dependent only on the yield stress o,, which occurs to the degree n,
and a constant C,. The function F, is dependent, except possibly also in the yield stress
o,,on the stresses {}. In the case of work hardening this function will (as shown in Sec-
tion 3.3) have to be homogeneous and of the same degree nas that of o, in F>. With refer-
ence to o, it is furthermore to be noted that it varies between the initial yield stress
0, = o,,and the maximum yield stress g,= g,.

The required relation between stresses and strains is:

{do} = [Se,] {de} Q)



where:

doy de,
do, de,
do, de,
{do} = dr, and {d¢f = dy
dr. dyy.
dex dyzx

According to the above-mentioned relation, the total strain vector {¢} increases by the
increment vector {de} which is composed of an elastic and plastic portion, as follows:

{de} = {de} + {de”} (6)

So long as the material is still elastic, the second term is zero, i.e. {de’} =0, so that
{de} = {de°} and therefore equation (5) can be written as:

{do} =[Sc]{de} M

where [S,] denotes the elastic stress-strain relation.

It will now be shown how the elasto-plastic strain relation [S,, | can be obtained. First,
however, it is necessary to discuss the distinction between associative and non-associa-
tive flow. The term associative flow is employed when it is assumed that Drucker’s pos-
tulate is valid, which states that the plastic strain increment is perpendicular to the yield
surface F, so that:

def =dA QIE 8
eh=dio- )]
or: oF
p el
de? 30,
oF
p el
de) 30,
oF
de?
do,
= 44y oF
dys, ary
oF
dyy: o1,
oF
dy ER
zX

Should Drucker’s postulate not be valid, then a function Q can be established to
which the normality principle is applicable, so that in more general terms the following
can be stated:

(de”) = a7 {%g} ©)

10



In the case represented by equation (9) there is non-associative flow.

The stress-strain relation will now be elaborated for non-associative flow (Q = F). If it is
desired to base oneself on associative flow, it is merely necessary subsequently to put
O=F

Equation (9) together with equation (7) gives:

) 90
{de} = {de} +dA ‘8_(7] (10)
for which, with equation (7), we can write:

{ds}z[Se]‘l{da}-kd/l 30 (11D)
On premultiplication of the left and right sides of this equation by

oF|T

55 [5d
we obtain:

oF|" oF|T oF|" o0

55| [Selide}= ‘g,l {do} +d2 [% (S35, (12)

If the material yields, then F=0; if moreover no unloading takes place, then dF=0, so
that we obtain from equation (4):
T oF

(do} + 55 doy=0 (13)

c’)_F
do

|

Where (0F]dg)do, represents the effect of hardening.
Before further working out these expressions, we shall first, following the example of
Nayak and Zienkiewicz[5], [6] introduce the auxiliary quantity A4, as follows:

1 oFr

A= —-—aia_o_y

do, (14)
This quantity 4 comprises all the influences that determine the degree of hardening.
Thus, for the case of an ideal plastic material (i.e., no hardening): 4 = 0. With equation
(14) we can now write equation (13) as follows:

dF= ‘@Tda—Adﬂ=0 (15)
do
On substituting this into equation (12) and rearranging, we obtain:
oF|"
= [80] [Se] {de} a7
A+ oF T[S] 90
do oo

11



Substitution of this into equation (11) gives:

IS

ol

{de} =[S,] {da} + -{de} (13)

Premultiplication of the left and right sides by [S,] followed by some rearranging now
gives:

jdo} = | [51 - Gl TPF > 19)
ol 51150
so that we thus have the required relation:
{do} = [Se,]{de} Q)
where:
s {222 s
5e) =150 %!l;]} el o)

In this equations, as already stated, 4 is an auxiliary quantity with which the effect of
hardening is taken into account. This will be further considered in the next chapters.
A variant formulation of equation (20) is as follows:

[Seo] =[S = (1= 1) [S]!GF gﬁl -
o] =[S = (1- (20a)
sl 1535
where:
h= aF;1 El) (200
A+ % [Se] ‘%

It should be noted that, although the elasto-plastic stress-strain relation has been deriv-
ed for the case Q= F, the further consideration concerning the correct magnitude of 4
will be based on the assumption Q= F, i.e., only for associative flow.

12



3 Derivation of hardening formulas

3.1 General

According to equation (14):
1 oF

where, according to equation (1):
oOF OJF -
a_(fy = 55; —_ I’leO'}',' | (21)

while, with reference to the hardening diagram to be dealt with in Chapter 4, we can
write:

do,= Hde) (22)

Hence it is assumed that the degree of hardening can be described with a uniaxial o-¢
diagram in which a comparison stress o, is plotted against an equivalent plastic strain ¢/,
Substitution of equations (21) and (22) into equation (14) then gives:

def oF,
A=H=Z <ncya""‘ 1) 23)

dz Y T da,

Thus we have the formula for determining 4. It is a general formula and not dependent
on any particular yield criterion or hardening model (work hardening or strain harden-
ing). This is so because the dependence on the yield criterion is incorporated in the
expression nCyay”"1 — 8F,/d0,, while the dependence on the hardening model adopted
is incorporated in the term Hde¢/, where H is the tangent modulus in the hardening dia-
gram and de/ is the increase of the equivalent plastic strain in this same diagram.

It will now be shown how this de/ is determined, first in the case of strain hardening
(Section 3.2), then in the case of work hardening (Section 3.3).

3.2 Strain hardening

With strain hardening, the equivalent plastic strain increment is taken as proportional
to the second invariant of the plastic strain increments, as follows:

def = a/idef} def (24)

where « is an interpolation coefficient which is mostly equal to 1, namely, in all cases
where one hardening diagram at a time is considered. Only if, with affine hardening dia-
grams, interpolation is done in the manner described in Section 4.5, does this coeffi-
cient a have a value not equal to 1.

13



Since, according to Drucker’s postulate:

ok

R =
defj =dig

(25)

we can write equation (24) finally as follows:

”2 oF, 0F;
p_ il =1
def =adi 3 30, 90, (26)

whence, with equation (23), we obtain for A4:

oF 2 OF OF
_ n=1_ 2212 Y71 Y01
A=aH (nCyay 60y) \[3 30, 30, (27)

3.3 Work hardening

For the increase dW, of the total dissipated energy W, we can write:

dW, = {(de*}T| o) (28)
The treatment of the subject will be based on associative flow, or equation (8), in which,
according to equations (1) and (2), we can put:

oF
do

R
|90

so that equation (28) can also be written as follows:

T

OF,
i {o) 29)

dW,,:d/ll%

In the further derivation, Euler’s theorem will be applied. This is possible only if the
function F; is homogeneous. Whereas this was not important in the case of strain hard-
ening, in the following treatment of the work hardening case it is a necessary condi-
tion.

The theorem in question (see [10], for example) states that for homogeneous func-
tions £ ({x}) of '™ degree:

of
ox

T

(x) = nf (30)

or written differently:

of af

XN13 - +Xp 3 +...+ X, 3—=~H, X2y ... X,
laxl+ 28x2+ + maxm f(xla 25 m)

14



This may be illustrated by the following example:

y
f@»=wm;

¥ _ ( 1 lnX)
ax Y\ Ty

—=x{l+In=
ay X

of  of ( y) ( y y
x&&yw—m/—1+m;+xyLHn;=2wm;

For this example: n=2, and we see that indeed:
Yy
2xyIn = 2f (x, »)

The theorem will now be applied to the homogeneous functions F; in equation (2) of nth
degree, giving:

oF;
do

T 81;'1
loh + 55, ov="hi 31

Since, according to equation (4), nFj is equal to nF; = nC,0,, equation (31) can also be
written as:

ok | , OR
EX {o} = nCyoy — a—UJ: Oy (32)
Substitution of equation (32) into equation (29) gives:
oF,
dW, = dio, (ncya;"‘ - a—‘) (33)
Oy

In accordance with the definition of the hardening diagram (see Chapter 4), the follow-
ing expression can be written for d W):

1
dW,,:Eds;’ay (34)

where « is again the interpolation factor discussed in Section 4.5, so that, on equating
(33) and (34), we obtain:

(35)

2
- do,

def =a di (nCyay”_1

With equation (35) the strain increment d¢ after each loading step is known. By sum-
mation of these increments we obtain the total equivalent strain &/, so that the coeffi-
cient H can be read from the hardening diagram.

15



Equation (23) is applicable both to strain hardening and to work hardening. The for-
mula for the determination of d¢f (equation 35) is valid only in the last-mentioned case.
For the case of strain hardening, see equation (26).

To conclude this section of the article, two alternative formulas for 4 will be given. It
is emphatically pointed out that these apply only to the case of work hardening.

The first alternative formula is obtained by substituting equation (35) into equation
(23), giving:

(36)

ok
do,

A=aH (nCyay"_1 —

The second alternative formula is obtained as the result of substituting equation (32)
into equation (36):

e for

A= (37)

r oF, )
n—1 1
{o} (nCyay s

This formulation is also frequently encountered in the literature, though for the special
case: a=1,n=1, C,=1 and 0F/d0,=0, so that equation (37) thus becomes:
T

ot 3%

g, |00

A

3.4 Discussion of the results

The formulas for the determination of dej and H, derived in the preceding sections, are
still of a general character. For each yield criterion they can be further worked out by
writing 0F; /0o, and (so far as possible) VidF|do;0F|da;; in explicit form and substituting
them into the formulas.

The formulas are developed for various yield criteria in Appendix A. The results are
summarized in Table 1.

Itis seen there that def and 4 are dependent on the yield criterion employed, which is
something that must not be overlooked.

Thus, Buyukozturk [7] has erroneously based his criterion on:

di=dgf

a relation which is valid only for the Von Mises criterion formulated in the manner indi-
cated in Table 1.
According to Table 1, Buyukozturk should have used the following formulation:

2700“)
20,

def = di (1 - 39)

16



[able 1. Summary of the hardening formulas established,
embodying the auxiliary quantities 6, and ;.

Yield criterion B = Br=
Seneral formulation
"~/ (03, 0) = Gof =0 - O, , 0F; OF;

F nGyoy da, * doy; Aoy,
Tresca
F=2Gcos®—0,=0 1 23
Von Mises
F=6y3—0,=0 1 1
Buyukozturk [7]

- 270, kt 8F1 8F1 *
F=3/35 + 30,001 + 100k — 0,= 0 1— 20‘; 2 90, 30,
Buyukozturk (see variant Appendix D)

=2 81 2 , OF) OF, *
F=276"+ 270,001 + 5055 — 0, =0 20, — 2700k 30, 90,
Drucker-Prager

60o Sin 0 _ o,(1—sin 6)y3 (1 —sin 6)/3 | [ 8sin’6 |
=— 4+ 00— ———=0 A o Y O VAR
(3 —sin 6)4/3 3—sin 6 3—sin @ 3(3 —sin 6)
Mohr-Coulomb
. _ IR : 1 _ 1—sin@ 1 +sin® 6
F= 0, Sin 8+ G cos @ — 6/y/3 sing sin 6 —}0,(1 —sin 6) —5 —3
Workhardening: def = a dAB; ** Strainhardening: de) = @ dA8, **
A =aHp A =alpp

* Cannot be reduced to a simple expression
** =1 unless interpolation is done in accordance with section 4.5

The formula given for 4in [7] is likewise affected by this. For the benefit of those readers
who may wish to consult that publication, an error in differentiation committed in it
should also be noted. Instead of

ﬂ Ookt (9J1

—:> the expression % (3_‘5) is used there.
20 20, 20

25,

17



The notation given in parentheses () is that which has been used in [7].

Finally, it should be pointed out that the formulas for the determination of dej and 4
will, with the exception of equation (23), change if an alternative formulation is chosen
for a particular yield criterion.

As an example, consider the Von Mises criterion for work hardening. The formula-
tion given in Table 1:

F=3/3—0 =0 (40)

(for the meaning of & see the list of symbols in the appended “Notation”) with a=1,
C,=1, n=1 and 9F,/90,=0 and with equations (35) and (36), gives respectively:

degf=dA and A=H
If the same criterion were written as:
F=3"—}=0 41

then, with a=1, Cy=§, n=2 and 0F,/dc =0 the following would be obtained with
equations (35) and (36):

def =3dle, and A=iHo!

The way in which a particular yield criterion is formulated will of course have no effect
on the stress-strain relation [S,,] ultimately obtained, nor on the magnitude of dej. The
reason is that the manner of formulation also affects equation (17) with which the factor
dZ occurring in the various formulas is determined.

4 Hardening formulas
4.1 Introduction

The degree of agreement between the calculated and the actual material behaviour
depends to a great extent on the hardening diagram introduced into the hardening
model. This diagram will be considered in more detail in the present chapter. First, it
will be examined how such a diagram could be determined with the aid of tests, more
particularly in Sections 4.2 and 4.3 for work hardening and strain hardening respect-
ively. It will often be found necessary to distinguish between different hardening dia-
grams as functions of the state of stress (uniaxial, biaxial, triaxial, tension-tension, ten-
sion-compression, etc.). This causes the need for a method of interpolation between the
values which follow from the various diagrams, an example of which is given in Sections
4.4 and 4.5.

4.2 Work hardening

A hardening diagram is often associated with a simple uniaxial test as envisaged in Fig.
3. Fig. 3a gives the g-¢-diagram which is obtained on measuring the stresses and strains

18
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Fig. 3. Example of a hardening diagram and the relation with a o-e-diagram for a uniaxial
specimen.

for a discrete number of load increments. The measured total strain can be split up into
an elastic and a plastic portion, as follows:

=6 +¢ (42)

The magnitude of ¢, is measured for each load increment. Also it is known up to what
strain ¢, the material is still just fully elastic (at the stress g, and the strain ¢, ), so that
each load it is possible to calculate ¢; from:

0,
6= )
Yo

and so that ¢ can be determined from equation (42), whence:
» 0,
&=~ a—y' & (44)

Y

By plotting the measured o, against the associated ¢ for each load increment, we obtain
the hardening diagram as presented in Fig. 3b. The slope of this diagram is characteriz-
ed by the hardening parameter H, which varies per load increment. This can be written
as follows:

Ao,=HA¢g) (45)

which has been used in equation (22).

19



This adequately explains the uniaxial case. In the case of a specimen under multi-
axial load it is still possible to base oneself on a uniaxial hardening diagram. The stress
o, is now not measured directly, butis a comparison stress, which is calculated by sub-
stitution of the measured values of the stresses {o} into the yield function, whence o, is
obtained. The calculation of the associated value of &} is also a little more complicated
than in the uniaxial case. For this purpose we first determine, for the measured values of
lo} and {e}, the associated plastic strains {¢} as follows:

fer) = {e} =1 el (46)

where {0,} and {&¢} are stresses and strains at the borderline between the elastic and the
plastic range. Now that {”} is known for each increment, the increase in dissipated
energy per load increment can be calculated from:

AW,= (A} (o) @7)
Then, finally, A¢/ is obtained from:

AW,

Ag= Ao,

(43)

On plotting o, against LA ¢/ we obtain the hardening diagram in the form of uniaxial
o, — ¢ diagram (Fig. 4b). There is, incidentally, no need to converttoa o, — & diagram.
It is alternatively possible directly to work with a o, — W, diagram in which o, has been
plotted against XA W, (Fig. 4a).

4.3 Strain hardening

Anequivalent o, — &/ diagram is used in the case of strain hardening too. Compiling this
diagram is based on the plastic strain invariant dg,, for which we have:

dz, =/dg; de; (49)

G
oy Gy u
T I arctan H
Yo YO
R P.y 4Wp
> Wp=ZaWp E— = . —=
4oy
a) 6y- Wp diagram for anarbitrary b) transformation into a uniaxial
loading case Gy - eyp diagram

Fig. 4.
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For materials possessing volume stability, such as steel, it is convenient to define dej as
follows:

del =dg, (50)

In this way, in a uniaxial test the calculated value of de will correspond to the measured
value, because for such a test on a volume-stable material the following relation holds:

defy =defs = —0,5 def)
For de, we thus obtain:
0z, = (17+0,52+0,5%) (def1)* =3(defy)’

Hence the factor ; is needed to ensure the validity of d¢] = def;. For materials which do
not possess volume stability this factor ; does not arise, but equation (50) can never-
theless still be applied.

The calculation of d¢/ presents no further problem. As has already been described
with reference to work hardening, o, and ¢/ can, for each load increment, be determined
from the measured data. With the aid of equation (50) the equivalent plastic strain
increment Aeg/ can be calculated as follows:

A&l =5 Ael Aef

o, can then again be plotted against ZA¢).

Now that both modes of hardening have been discussed, it will be evident that the
shape of the hardening diagram for one and the same material depends on whether
strain hardening or work hardening is applied. Only in the exceptional case of a uniaxial
test on a volume stable material (yield criterion of Von Mises or of Tresca) can the same
hardening diagram be adopted in the calculation for both types of hardening.

It should also be pointed out that in the case of work hardening it is sometimes pos-
sible to manage with fewer measurements than in the case of strain hardening. This fol-
lows from equation (47), from which it appears that if a particular stress component is
always zero during the test, the corresponding strain need not be measured, since no
contribution is made to AW, in the direction under consideration anyway.

From the foregoing it will have emerged that the shape of the hardening diagram
depends not only on the type of material, but also on:

- the stress combination (uniaxial, biaxial, etc.)
- the hardening model (work hardening, strain hardening)
- the yield criterion applied (for it is with this that the magnitude of o, is calculated).

4.4 Interpolation between arbitrary hardening diagrams

As already stated, the shape of the hardening diagram depends on the stress combina-
tion that occurs (uniaxial, biaxial, etc.). Since it is, in a given analysis, often not known
in advance what kind of stress combination will occur, it may be useful to apply the
interpolation procedure that will now be described. It will be explained with reference
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Fig. 5. Interpolation between different hardening diagrams.

to Fig. 5, which shows three hardening diagrams (numbered 1, 2 and 3) relating to uni-
axial, biaxial and triaxial loading respectively. For the sake of convenience, since we are
here concerned only with the principle involved, it is assumed that the shape of these
diagrams is independent of whether there is tension, compression or a combination of
the two.

In general, any particular load combination will have to be situated somewhere be-
tween these diagrams. It is now necessary to make a judicious choice of a distribution
rule for interpolating between the available hardening diagrams.

Examples of the choice of such a distribution rule are given in Appendix B.

For the example in Fig. 5 the choice of the distribution rule comes to writing the
increase in magnitude of the equivalent stress g, as follows:

do,= ki do, + ky doyy + ks doys (51)
while the distribution rule is:

ki+ky+ ky=1 (52)
Equation (51) can now be written as:

do, = (kH, + kyH, + ks H3) def (53)
with reference to equation (22):

do,= Hdé¢) (22)
it follows that A can now be defined as:

H=IkH, + kH, + ks Hy 54
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With this example presented in Fig. 5 the principle of interpolation will have been ade-
quately illustrated.

To conclude this section the general formulation will be given. Suppose that there are
n hardening diagrams and that a distribution rule has been established as follows:

Y k=1 (55)
i=1

then the hardening modulus is obtained from:

H=) IkH, (56)

The value of H; is read in the i'" hardening diagram for the total strain &/ attained at that
instant.

4.5 Interpolation between affine hardening diagrams

For a material such as concrete the shape of the hardening diagram depends on the state
of stress that occurs. This can be conceived quite easily by considering the uniaxial state
of stress. The o-e-diagram for compression is very different from that for tension. How-
ever, as an acceptable approximation, the two diagrams can be regarded as affine, i.e.,
similar in shape, linked by a constant multiplication factor « (see Fig. 6a).

This same factor also links the hardening diagrams derivable from the o-e-diagrams
(see Fig. 6b). Now if we assume, for any given loading condition, that there still exists

compression tension compression

oy ay

o

L
arctan £ arctan £ ‘

arctan £ e .g P p
— ey (zey veyP) A —>ey
Lo
tension P q P, P

9,

tig.69 uniaxial ¢-& diagram tig.6b hardening diagrams belonging to fig.6a

Fig. 6.
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similarity of the diagram associated with uniaxial compression as the “basic diagram”
(denoted by the subscript 1), then for any particular (arbitrary) diagram (/) we have:

e =¢enla; (57)
defi=de/a; (58)
H;= a;H, (59)

where the subscript i relates to the hardening diagram 7. The further application of the
procedure is illustrated in Fig. 7. The behaviour of ¢; as a function of the stress combina-
tion associated with the diagram i is assumed to be known (see Appendix C). From the
magnitude of g; it will be apparent which of the hardening diagrams is actually appli-
cable at any given instant. Since the value of @;is continually changing in the calculation
process, it means really that a different hardening diagram is being applied all the time.
It is possible, however, always to go on working with the same basic diagram (diagram
1). For further clarification, assume for example that for a particular step in the calcula-
tion the diagram 2 (see Fig. 7) is the relevant hardening diagram. For the total strain &}
which occurs we then find the corresponding slope .

If we wish to work only with diagram 1, the procedure is that we must read the slope in
this diagram, not at e/, butat &)y = a,&)». We thus read the slope H, for which H, = H/ a,.

Therefore, the magnitude of do in equation (22) remains unchanged, since it can
readily be seen that do,= H, def, = H, de)).
The above-mentioned procedure affects the derivation of the hardening formulas. In
the case where hardening is conceived as dependent on W, this means that in equation
(34), in Section 3.3 the coefficient @ occurs in the denominator:

1
— p
dW, =0, def (34)
basic diagram
G
y
/ d
K
- 5
H1
H; = aj Hq
6y® H3 = agHq
Hy =ay Hq
&y;"= ey”/%i —s
ey PEey°/%
P15 P
ey2"= eyf/a2 deyg =|dey /a2
P
&yq° _ dey,

Fig. 7. Affine hardening diagrams.
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This is so because the actual strain increment is smaller by a factor 1/« than the incre-
ment in the basic diagram in which the value associated with His read. For the same rea-
son the coefficient occurs in equation (24) in the case of strain hardening (Section 3.2),
namely:

del = a V3 def) del] (24)

Finally, it is to be noted that in a case where no interpolation at all is required because
there is only one hardening diagram (applicable to all possible load combinations) to be
considered, or where interpolation is done in accordance with Section 4.4, the value to
be adopted for this coefficient is ¢ = 1.

5 Concluding remarks

In this article is has been explained how the phenomenon of hardening can be incorpo-
rated into the elasto-plastic mathematical model. A distinction is drawn between work
hardening and strain hardening. Two parameters are found to be essential for the pur-
pose, namely, the equivalent plastic strain increment d¢ and the hardening parameter
A. It proves possible to establish for this hardening parameter a general formula (equa-
tion 23) which is independent of what hardening model and what yield criterion are
adopted.

The formulas for the determination of d¢/ and 4 have been further developed in
Appendix A for a number of yield criteria and summarized in Table 1.

The advantage of the formulas given in this article lies more particularly in their gen-
eral applicability. Because of this, if a new yield criterion is introduced, the associated
formulation of d¢ and A presents no problem at all. If, instead of one hardening dia-
gram, a number of hardening diagrams as functions of the state of stress are introduced,
an improvement of the results can be obtained with the aid of the described interpola-
tion methods.
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APPENDIX A

Further development of hardening formulas

Al General

The formulas for de and 4 for the yield criteria of Tresca, Von Mises, Buyukozturk,
Drucker-Prager and Mohr-Coulomb will be elaborated here.

For Buyukozturk’s criterion the formulation indicated in [7] will be worked out, but
also the variant envisaged in Appendix D.

For the other criteria the starting point will be the formulation employed by Zienkie-
wicz in [5], which expresses the yield criteria in the stress invariants oo, 0 and @. The
yield criteria are summarized in Table Al.

The quantities 5and @are represented, for a given value, in a so-called deviatoric sec-
tion in Fig. A1. The material constants ¢ (cohesion) and 6 (friction) associated with the
Drucker-Prager and Mohr-Coulomb criteria in the equations (A15) and (A19) can be
expressed as functions of the equivalent yield stress o,, as follows:

) o, —fi
H=-> Al
sin 0, %/, (A1)
1—sin 8
=20 o5 g (A2)

where £, denotes the uniaxial tensile strength.

For some yield criteria it will, for the further derivation, be more convenient to base
oneself, not on the formulation given in Table 1, but on a formulation in terms of prin-
ciple stresses o1, 0, and o3. It is then furthermore necessary to express the funetion
always in ¢, and not, as in the case of Mohr-Coulomb and Drucker-Prager, in the cohe-

73
A

yield criterion

during hardening
] 8 remains constant,

mohr's circle ﬁr
¢ = cohesion

6 =friction

n
pure shear l 4 %

Fig. Al. Deviatoric section. Fig. A2. Mohr Coulomb yield criterion.
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sion ¢ (see equation (A15) and (A16)). Because of this the hardening formulas derived
in Chapter 3 cannot be applied.

The cohesion ccan, however, be got rid of with the aid of equation (A2): a yield crite-
rion expressed in ¢, and 6 is thus obtained. Since isotropic hardening is presumed, the
friction 6 can be taken to remain constant during hardening, so that it causes no trouble
in the process of differentiation, with regard to the constancy of 6 see, for example, Fig.
A2 relating to the Mohr-Coulomb yield criterion.

A2  Work hardening
TRESCA:
The formulation given in Table 1:
F=26cos®—0,=0 (A3)
is replaced by:

F201—0'3—0'y=0 (A4)
F
Since 0F;/80,=0, while n=1 and C, = 1, it follows from equations (35) and (36) that:

de) = a dd (A5)
VON MISES:

The formulation is:

F=5G3—0,=0 (AT)
F

With 0F;/d0,=0 and n=1 and C,=1 we again obtain from equations (35) and (36):
def = a dA (A5)
A=aH (A6)

BUYUKOZTURK [7]:

F=3 36+ 30, 0o+ 200k — 0, =0 (A8)
F

This is a homogeneous function of degree n=1, while C,=1.
Furthermore, for 0F,/00,:
aFI 900kt _ 2700kt

= = (A9)
aay 2{35’2 + 3Uy00kt + ?ngt 20}’
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From equations (35) and (36) we now obtain:

27
def = a di (1 ——2ﬂ) (A10)
Oy
2700kt
AzaH(l— 2” “‘) (A1)
Oy

BUYUKOZTURK (variant, see Appendix D):

F=276%+ 270,000 + 0% — 02 =0 (A12)

k

For 0F,/00, we obtain:

Of _ 27

ao_y = Ookt
The function F is of degree n= 2, while again C,=1.

, Now from equations (35) and (36):

def = a dA(20, — 27 00k) (A13)

A= aH(20,— 2700k’ (A14)
DRUCKER-PRAGER:

60, SIN O _ 6¢ cos @
F= +0+ =0 Al5
G—sin)y3 " (3—sin 6)y3 (A15)
With equation (A2) this can alternatively be written as follows:
600k SIN O _ (1 —sin 6)
— ok > L 6—0,——"3=0 Al6
(G_sin O3 %3 sing ¥ (A16)
F
With éaz ,h=1 an V=3 "sin 6
we obtain from equations (35) and (36):
(1—sin 6)
df=adiy—g5V (A17)
A___3aH(1—sm 6) (A18)

3 —sin @
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MOHR-COULOMB:

o

F= 04 sin 0+z‘7cos<l>~—‘—/§sin(osin O—ccos =0 (A19)

On substitution of the formulas expressing o,, & and @ in terms of principal stresses
(see notation), equation (A19) can alternatively be written as follows:

F= %(0’1 ~U3)—CCOS 0+%(01+03) sin =0 (A20)

where o, > 0, > 03
On substitution of equation (A2) we obtain:
F=3(01— 03) +3(01 + 05) sin @ —}(1 —sin 0)o,=0 (A21)
F

With 9F1/d0,=0, n=1 and C,= (1 —sin ) we obtain from equations (35) and (36):

1 —sin @
def = a dA 5 (A22)
1 —sin 6\?

A=aH — (A23)
A3 Strain hardening
TRESCA:
The formulation given in equation (A4) is the starting point;:

F=0’1—03—-(Ty=0 (A4)

k
Since Fj is expressed in terms of principal stresses, we can write:

OF oF OF OoF, oF, oF dF oF, |
80, 80, 00\ 90, " 30y 30, * 89, 80y = 1100+ (= 1) (=) =2

\[20F oF 2

With n=1 and C,=1 and 0F/d0, =0 we obtain from equations (26) and (27)
del =3a diy/3 (A24)
A=1aH /3 (A25)

so that:
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VON MISES:

The formulation given in equation (A7) is:

F=63—0,=0
B

For determining 0F,/dg, it should be borne in mind that:

=V{(01— ) + (0, — 33)? + (03 — 61)*) (see notation)

whence can be deduced:
99 15 (25 7o) s

do, 0oy 20

oF, do (02 — Uokt)

do, 90,V T\ 20 /3

8F3 oo <U3 — Uokt)
=0, 3= 3

from which it follows that:
oF, oF 8F1 aFl N (@ﬂ)z}
GUU 80,, 601 802 A0
from which we obtain, on rearrangement:

2 0F, R _1
390,00,

Equations (26) and (27), with 0F1/80,=0, n=1, C,=1 give the following expressions:

def =a di
A=aH

BUYUKOZTURK [7]:

F=3V36% 30,004 + {00kt — 0, =0
R

For dF /90, we have according to equation (A9):

a_Ii _ 270'okt
do,” 20,

30

(A26)
(A27)

(A8)



Furthermore: n=1 and G=1. Unfortunately, it is not possible further to simplify
0F/d0y; this term will have to be determined numerically. From equations (26) and
(27) we obtain:

o g \[PoFi R
dey =ad 3 8(7,_-,- (90,-/-
20w\ |2 9F OF, A9
AZLZH(l— 20,‘] ) 3 aaij 00,:, ( )

BUYUKOZTURK (variant, see Appendix D)

(A28)

F=275% + 270,00 +% 0% — 02 =0 (12)
k

Here again it is not possible to simplify 0F /90y
With n=2, C,=1 and 0F/d0, =0 we obtain from equations (26) and (27)

\/2 OF, OF,
def = adi A30
Y 3 90,00, (A30)
\/2 OF, OF,
A= aH 20,— 2704) gﬁﬁ (A31)
u u

DRUCKER-PRAGER:

The formulation employed in equation (A15) is as follows:

605 SiNO  _ 0,(1—sin 6)
F= +0— =0
G-sing)y3" " 3_sing (A13)
3

whence can be deduced:

ai_ 2 sin @ ‘/
90, (3 —sin 6) 3401~ o

oF 2 sin 0

£=m\/3+02—00m

oF 2 sin 0
80, (3 —sin §) V3 + %~ oo

from which it follows that:

OR 8F1_<6£>2 (8_171_)2+(§ﬁ>2__ 4 sin’ 0 N
0] oo, (3 —sin 6)?

doy; doy 003
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so that:

oF oF 8 sin® 0 iy
doy 60,, 3(3 —sin 0 i

with n=1, Qﬁzo and C,= 1;5—119 we obtain from equations (26) and (27):
do, 77 3—sind
8 sin’ @
=i \[————+ (A32)
dg'=d 33—sing)’
1—sin 6 8 sin’ 0
A=H( sin )‘/3 s1n. L (A33)

(3 —sin 6) 3(3 —sin 6)’

If 9 is allowed to approach zero, it follows that: de) =3a di J3and A= laH /3. This
apparently does not tally with the corresponding values for the Von Mises method, for
which, according to equations (A26) and (A27), we obtained: dej = a diand 4= aH.
The difference is attributable to the fact, that when 0 in equation (A15) approaches
zero, the yield function becomes:
F=35—30, J3=0 (A34)
k

which is not in agreement with the formulation of equation (A7).

For
2ok o,
3 aO'U aU,'j

we can deduce for the formulation of equation (A34)

(see the derivation for Von Mises on page 30).

With n=1,
oF
90,= 0 and C,=43
this gives, on substitution into equations (26) and (27):
def =3 dAy/3 (A35)
A=1H3 (A36)

which is also obtained from equation (A32) and (A33) by allowing # in them to
approach zero.
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MOHR-COULOMB:

The formulation given in equation (A21) forms the starting point:

F= %(0] —0’3)+2l(0'1+03) sin 9—%(1—511’1 Q)Uy:() (A21)
k

oF .

90, = 3(1+sin 6)

oh _

602 -

oF

5o =1 —sin 0)

Hence we obtain:

2

ot ar,_or
do; 00y \doy

on) (o5}
+ 602 803 -

$(1+sin 0)> + (0)* + i(1 — sin 6)” = }(1 + sin? 9)
so that:

2 9F, OF, _\/1 +sin’6
gaa,j aay_ 3

With n=1, 0F/90,=0 and C,=3(1 —sin ) equations (26) and (27) give:

1+sin’ @
de? = di \/_“S;n (A37)
”1+ in’ 0 )
SH(1 — sin 6) ﬁs—;—-— (A38)

A
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APPENDIX B

Two examples of possible distribution rules for interpolation

B1 General

A method for carrying out interpolations between various hardening diagrams has been
discussed in Section 4.2. This method requires the use of a distribution rule conforming

to:
Y k=1 (B1)
i=1

The object is thereby to determine an equivalent hardening modulus A, as follows:

H=Y kH, (B2)

i=1
Two possible distribution rules will be presented here. The first relates to the case of
three hardening diagrams relating to uniaxial, biaxial and triaxial loading respectively
(whether tension, compression or a combination of the two occurs is immaterial). The
second relates to the rather unlikely case where there are nine hardening diagrams

available for all conceivable load combinations.

B2 Casel

As already noted, there are three hardening diagrams available in this case. In Table B1
these are symbolized for uniaxial, biaxial and triaxial loading, designated as types, 1,2
and 3 respectively. On the basis of Lagrange’s interpolation polynomial it is indicated,
in the same table, how the associated factors ki, k; and k; can be calculated as functions

Table B1. Interpolation between three types of tests.

type 1
—F— ., A+ A
e
type 2
jﬁﬁi k_£+é zéé
y = _n 2293
ol o
type 3
o2
@:iﬁ
4
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Table B2. Interpolation between two types of tests.

type 1
A+ oo
o1 i

4—@—-’
type 2
75’,5» _d+d dd
S

k=1-

of the principal stresses ¢, 0, and o;. Since it is assumed to be of no importance whether
compression, tension or a combination thereof occurs, the stresses gy, o, and 03 occur
quadratically in the formulas. The principal stresses must be arranged as follows:

o> 0> a4

since the terms are divided by ¢7. In the case of hardening, o} will never be zero, for this
is possible only if the point under consideration is stressless. The factors, k;, k and k3 do
indeed fulfil the condition ki + &, + k3 = 1, while the check shows that, if the purely
uniaxial, biaxial or triaxial test is considered, the relevant value of kis in fact equal to 1
and the two others are both equal to 0.

In a case where only uniaxial and biaxial tests are available, Table B1 can be simpli-
fied to Table B2 by adding the coefficients k, and k;. Then, if we can still be certain that
03 is always zero, we obtain:

% 7
k=1—— and hk=—
1 a T
B3 Case 2
Starting from the arrangement:
01> 0y> 03 (B3)

We can use Table B3 for interpolation between nine types of tests which are indicated
symbolically in that table.

For the factors k; the condition is again ) -, k= 1.

In the formulas the stress g, occurs in the denominator; it is defined as follows:

04 =3(01 — 03) +4|(01 + 03))| (B4)

This stress never becomes zero in the case of hardening, since equation (B4) can
become zero only if o) = 03 = 0. According to equation (B3), o, must then also be zero,
so that the point is stressless in that case.
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Table B3.

Interpolation between nine types of tests.

type of test

interpolation coefticient

0'3(04 + 03)

1 + + + % k=3 T+ 0,02C

2+ o+ 0 9{ k2=(—”“—+—”%%”2—_@+0,12c
3+ 0 0 5 ks =(”“—+g§zjé("——ai)+o,1gc
4+ o+ o+ ‘% o = (2= _:%4)("2 —9%) , o06C
5+ 0 = % ks =("L~"%"2—ﬂ+0,24c

6 + = = %é YU —;“)("‘ =% 1 0,06
7 0 0 =+ 5 k7=(ﬂ'”—‘i§@_—a3)+o,18c

§ 0 o+ o+ o ks :(i'i‘——‘“l-é"La—z)+o,12c

9 o+ o+ o+ % k9=%——~0’(0;; % 4 002¢

where: C=(-qm—ﬂ' 04 = 3(01 — 03) +3|(01 — 03)|

a

b
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In practice, however, it is hardly conceivable that the associated hardening diagrams for
all nine types of tests are known.

However, the table can still be of use, as will be shown with the aid of a simple
example. Suppose that for type 5 there is no hardening diagram available, so that it is
only possible to interpolate between eight types of tests. Now it can reasonably be
assumed that the “missing” diagram is the average of the diagrams associated with the
types 4 and 6. This assumption means that the formula for k; and ks most both be adjust-
ed by the addition of half of ks, so that:

(01— 03 — 04) (02 — 03)

k=) 0.18C
4 2 0‘% +
PN el Cr i B PP
a2

The coefficient ks can now be omitted, with the result that eight of the nine coefficients
remain.

In the manner outlined above it is always possible to compile, with the elements con-
tained in Table B3, a new reduced table which can be used for the number of hardening
diagrams actually available.
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APPENDIX C

Example of an interpolation function for affine hardening diagrams

Cl1 General

In Section4.3 an interpolation method is discussed in which, with the aid of a coefficient
a, it is possible to interpolate between affine hardening diagrams. An example will now
be given to show how such a function could be conceived.

The starting point is provided by the hardening diagram for uniaxial compression.
For this chosen standard case we have a = 1. Furthermore it will be endeavoured to tie
this up as well as possible with the case of uniaxial tension and with the case of biaxial
compression.

In order to represent the above-mentioned ranges in one diagram, we may consider a
section through the yield surface along the hydrostatic axis (see Fig. C1). oo has been
plotted along the horizontal, and 15+/3 along the vertical axis. The factor %‘/3 has been
introduced in order to preserve the correct geometric ratio of the sections. It should be
noted that the shape of the intersection varies in principle with the value of @ (see Fig.
A1), but since this is not of essential importance, only one section need be considered.

In this intersection it is indicated how the principal axes are located in relation to the
hydrostatic axis, namely, at angles ¢ =iz and jz. Lines for which o, =0, with
g3 =0, etc. are sloped at angles ¢ = 7 and }r. _

Now it is assumed that a ratio of, for example, 1/10 exists between the o-e-diagram for
uniaxial compression and the o-¢ for uniaxial tension. The ultimate tensile strain is
therefore 1/10 of the ultimate compressive strain, while the corresponding tensile
strength is equal to 1/10 of the compressive strength.

In the example it is further assumed that the biaxial compressive strength exceeds
the uniaxial compressive strength by a factor of 1.2. This factor of 1.2 affects the whole
g-e-diagram, so that the shape is the same as that for uniaxial compression with un-
changed modulus of elasticity.

In the further treatment of the problem it is necessary to draw a distinction between
strain hardening and work hardening.

C2 Strain hardening

The above-mentioned ratios 0.1 and 1.2 will also be more or less reflected in the harden-
ing diagram, on the understanding that they relate only to the plastic strains ¢/, since the
associated values of g, are now scaled, which is manifested, for example, in the fact that
all the hardening diagrams begin with g, = g,,, Instead of continually using a different
hardening diagram, we may introduce factors @, in accordance with Section 4.2, by
means of which every possible hardening diagram is converted to the strain hardening
diagram (in this case the diagram for uniaxial compression). The factor & for uniaxial
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cos ¢ =-0,924 cos ¢ =- 0707 Ot cos ¢ = 0,707
10—
b) strain hardening /
0,83//
-0.924 -0.707 0.707
a ——p COS @
10

c) work hardening /

. //

-0.924 -0.707 0 0.707
—p COS ¢

Fig. C1. Interpolation factor.

tension then becomes 1/0.1 =10 and that for biaxial compression becomes
1/1.2=0.83.

The two cases are illustrated in Fig. C1, where the point @ = 1 is also shown. For con-
venience these respective points can be connected by straight lines, so that the variation
pattern is known, except for ranges ¢ < 7/4 and ¢ > ¢7. For these ranges, « may be
assumed constant, namely a =10 and 0.83.

Of course, more complex interpolation formulas can be conceived. Considering the
rather high degree of schematization arising from the assumption of affinity of the har-
dening diagrams, this is pointless, however.

The various ranges are demarcated with the aid of the angle ¢. Arithmetically
it is, however, more convenient to use cos @. After each iterative step, cos ¢ is determi-
nable from:
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The following values correspond to the significant cases:

cos 45°=0.707 cos 135°= —0.707 cos 1573°= —0.924

With the aid of equation (C1) we now calculate the value of cos ¢ that arises. By linear
interpolation with cos ¢ between the various known points the values for o are succes-
sively obtained:

cos ¢ < —0.924 —-a=0.83

-0.924 < cos p < -0.707 > a=0.92 +0.13 cos ¢
-0.707 <cos p< 0.707—>a=5.5+6.36 cos ¢
cos ¢ > 0.707 —-a=10

These formulas describe the function presented in Fig. C1b, composed of straight lines.

C3 Work hardening

Ifhardening is taken as proportional to W,, nothing changes in so far as the magnitude of
ais concerned. Consider the case of uniaxial tension. In comparison with uniaxial com-
pression, the stress as well as the strain are smaller by a factor of 0.1. Hence the dissipat-
ed energy will differ by a factor of 0.01. In both cases the degree of hardening is the
same, however. Hence the factors o have to be squared. It would be possible to inter-
polate linearly between the squared values, but it is just as convenient to square the
whole linear interpolation given in the preceding section, so that we obtain:

cos p < —0.924 —a=0.69

-0.924 < cos p < —0.707 —» &= (0.92 + 0.13 cos @)’
-0.707 < cos ¢ < —0.707 - a= (5.5 + 6.36 cos ¢)*
cos ¢ > 0.707 —-a=100

These formulas have been plotted in Fig. Clc, which is entirely similar to Fig. Cl1b,
except that the ordinates are values of i/« instead of a.
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APPENDIX D

Variant formulation of Buyukozturk’s criterion

Two formulations of Buyukozturk’s yield criterion have been considered in this article.
This clearly illustrates that the magnitude of 4 and de/ depends on the way in which the
criterion is formulated. In this appendix it will be shown why the variant formulation is
preferable for practical calculations.

To clarify this, Buyukozturk’s original formulation with a section along the hydro-
static axis is shown in Fig. D1.

[ts shape turns out to be an ellipse, which comprises an imaginary region due to the
fact that in the formulation:

F=3V33 + 30,00 + 305 — 0,=0 (D1)

as given in equation (5) the radical can become imaginary. In the case of the Von Mises
criterion, which according to Section A3 of Appendix A can be written as:

F=Vi{(01— 0)* + (02— 03)" + (03— 31)2}) —0,=0 (D2)

this problem does not arise, since the expression under the root sign is always positive.

In equation (D1), on the other hand, in view of the term 0,00k in Which gy can be
negative and have a dominant effect, the whole expression under the root sign can
become negative. From the physical point of view this does not constitute a problem,
for we are within the yield surface, so that the material is still elastic and is in fact not
concerned with yield surfaces at all. Practically, however, numerical problems are liable
to arise. One way of avoiding these is to perform the calculations with the squared func-
tion as the yield surface.

ey

-0.036
—> "'okt/ay

l

= /Gy

F>0 F=0 F<0 F=

_Uy(D

Fig. D1. The yield criterion causes a forbidden region.
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