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concrete cross-sectional area

theoretical thickness of concrete section

load eccentricity

stiffness parameters of rheological model
modulus of elasticity of concrete at age of 28 days
modulus of elasticity of concrete at time t=1
load on column

short-term loadbearing capacity of column
short-term elastic buckling load

first-order collapse load

long-term loadbearing capacity of column
buckling load of column based on stiffness of the steel
creep buckling load

function

function

function

depth of concrete section

force on rheological model

stiffness parameters of rheological model
constituent factors of creep coefficient

stiffness of concrete member

stiffness of steel member

length of column

moment in concrete section

moment in steel section

safety against elastic buckling

safety against creep buckling

frictional force of sliding element

normal force in concrete section

normal force in steel section

perimeter length of concrete section in contact with external atmosphere
ratio of stiffness of steel section to stiffness of whole section
point of time

auxiliary quantity

creep strain as a function of load duration

reversible creep strain as a function of load duration
irreversible creep strain as a function of load duration
deflection of column model

initial deflection

compression of column model



strain

viscosity paraméters of rheological model

parameter for creep rate

auxiliary quantity

stress

point of time of load application

creep coefficient as a function of rand r

coefficient for reversible creep strain (CEB-FIP 1978)
coefficient for irreversible creep strain (CEB-FIP 1978)
creep coefficient for load of infinite duration
parameter for creep rate

reinforcement percentage



A SIMPLIFIED APPROACH TO CREEP BUCKLING
AND CREEP INSTABILITY OF STEEL-CONCRETE COLUMNS

Preface

This study was carried out at TNO-IBBC as part of the investigation program “steel-
concrete columns”, which is sponsered by CUR-VB.

The writer’s wishes to express his gratitude to prof. ir. J. Witteveen, ir. A. C. W. M. Vrou-
wenvelder, ir. H. J. Buitenkamp and the members of the CUR-VB workinggroup C 15A
for their stimulating suggestions and remarks.

Abstract

The effect of the creep of concrete on the physical and geometrical non-linear behaviour
of concrete columns is dealt with in this article. The aim has been to achieve simplicity
of treatment by choosing conveniently manipulatable mathematical models. The geo-
metrical non-linear behaviour of columns is reduced to essentials with the aid of dis-
crete kinematic models. The material strain behaviour of concrete is schematized by
rheological models.

With the aid of these models the concepts of creep buckling and creep instability are
analysed. By creep buckling is understood the academic case of a slowly buckling
straight strut under axial (centric) load. Creep instability denotes the real phenomenon
of sudden instability of a column occurring a long time after load application in con-
sequence of its attaining a critical deflection due to time-dependent effects.

Further, the effect of the reinforcing steel in a concrete column upon the creep defor-
mation behaviour of the column is investigated. The choice of model enables the prob-
lems involved to be properly visualized, and qualitative insight into the extent to which
various parameters affect the creep deformation behaviour of concrete columns is ob-
tained. The approach presented here can, for example, be useful in interpreting com-
puter calculations or in assessing the creep sensitivity of a concrete structure.






A simplified approach to creep buckling
and creep instability of steel-concrete columns

1 Introduction

The development of advanced numerical methods for the analysis of structures has
made considerable progress in recent years. Various computer programs enable the
present-day designer to analyse the behaviour of many kinds of structure in a realistic
manner. There is, however, a risk that the overall picture will be obscured by a multi-
tude of numerical data. Hence there continues to exist a need for simple analytical
methods that can give deeper insight into the physical basis of structural behaviour. Par-
ticularly in the design stage it is important to know what phenomena will play a part in
the structure to be designed and in what way they will do this.

Creep of concrete is a phenomenon of this kind with which it is sometimes very
necessary to reckon in connection with the design of concrete structures. This applies to
prestressed concrete or to concrete structures for which close dimensional control is re-
quired. Creep may also play a part in stability problems. For example, the stability of
slender columns may be endangered as a result of time-dependent increase of an initial
lateral deflection. This last-mentioned phenomenon will be dealt with in this article, in
which it will be endeavoured to tackle the problems in their most elementary form with
the aid of a simple model conception.

First, a short description of the creep behaviour of concrete will be given. Then the
mathematical formulation of this behaviour with the aid of rheological models will be
considered. The ostensive (directly demonstrative) character of such models makes
them eminently suitable for the purpose of this article. Next, with the aid of a combina-
tion of rheological models and a kinematic model, an analysis of the concepts of “creep
buckling” and “creep instability” is presented. Finally, the effect of reinforcing steel on
the time-dependent deformation of a reinforced concrete column is studied.

2 Creep of concrete
2.1 Linear creep

When subjected to loading of long duration, concrete displays a delayed deformation
which is called creep. The magnitude of this creep deformation may be a multiple of
that of the deformation which occurs immediately on application of loading. For con-
crete subjected to constant compressive stress the time-dependent strain is approxi-
mately proportional to the stress. This is referred to as linear creep and is expressed by
the following formula (see Fig. 1):

e(t)=E%+(og—i )
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Fig. 1. Creep of concrete under constant stress.
where:
E, =modulus of elasticity at a specified time, e.g., after 28 days’ hardening

E(r) = modulus of elasticity at the time of loading
e(r) =time-dependent strain

0y = constant compressive stress

@ = creep coefficient

Formula (1) is valid only if the concrete stress is not more than about 50% of the com-
pressive strength. At higher stresses the creep strains are relatively larger and there is
then no longer a linear relation between stresses and (time-dependent) strains. In that
case there is what is known as non-linear creep. This last-mentioned creep behaviour
will not be considered here.

2.2 Creep coefficient

With the aid of formula (1) the (linear) creep of concrete can be characterized by a
dimensionless creep coefficient g. It is evident that this coefficient is primarily depen-
dent on the duration of the load. Other factors that affect the magnitude of the creep
coefficient are:

the quality (strength class) of the concrete;

the age of the concrete at the time of load application;
the dimensions of the structural member;

the moisture conditions within the concrete.
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Fig. 2. Creep of concrete for successive loading and unloading.

If concrete which has been subjected to load for a time is then unloaded, part of the
creep strain will in the long run be recovered, i.e., it will disappear, and part of the creep
strain will remain permanently (Fig. 2).

After direct elastic recovery on removal of the load there occurs a further delayed re-
covery over a period of time. This part of the creep strain is called the elastic or rever-
sible creep strain. The part that remains permanently after load removal is called the
plastic or irreversible creep strain.

The creep of concrete can therefore be described as a combination of a delayed elastic
and a delayed plastic strain behaviour.

The proportion of plastic creep strain in the total creep strain depends mainly on the
age that the concrete has attained at the time of applying load to it. Very old concrete
shows hardly any plastic creep strain. The magnitude of the elastic creep is more or less
independent of the age of the concrete and can, in the light of the latest information, be
taken as equal to about 40% of the directly occurring strain.

3 Mathematical formulation of creep
3.1 General method

The magnitude of ¢ can be determined experimentally as a function of the factors al-
ready mentioned. Quantitative data relating to ¢ are given in the various codes and
directives for the design of concrete structures. The time-dependent deformations of a
structure in which the concrete stresses remain constant can be determined quite
simply with the aid of formula (1). But if the concrete stresses vary gradually or stepwise



with time, there is a complication in that this formula can then not be directly applied.

In principle this problem can be solved as follows: Consider the varying concrete
stress as if it were composed of an infinite number of constant loads, of magnitude do,
applied in succession. Using the superposition principle and formula (1), we can thus
write (see Fig. 3):

e(t)=0(0) ﬁ“LElb(”(O’t)lJrgg%r)l'E%T)J’El;(”(”’)}d’ )

In formula (2) the creep coefficient ¢ is conceived as a function of two variables,
namely, the load duration ¢and the point of time rat which the load is applied. Hence:
o= ¢(1,t). For a given stress behaviour ¢ () as a function of time the time-dependent

,——-——_—-—_
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Fig. 3. Calculation of time-dependent strain due to variable stress by superposition of constant

stresses.
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strain (1) is obtained by direct integration of (2). In cases where the strain is given and
the stress is to be calculated - e.g., in the case of relaxation - an integral equation will
have to be solved. This occurs also in dealing with geometrical non-linear problems in
which ¢ and eare, in the first instance, unknown but which preserve a certain interrela-
tionship. In general, it is not possible to obtain simple analytical solutions by this
method.

Instead, it soon becomes necessary to have recourse to numerical methods. Only by a
special choice of ¢ (7, 7) and E(r) can the mathematical problems be reduced to manage-
able proportions. Of course, such a choice must agree as closely as possible with the
actual - experimentally determined - creep behaviour of concrete.

In the following treatment the mathematical formulation of the creep of concrete will
be tackled in a different way. Afterwards it will emerge that the procedure to be adopted
here is essentially a question of making a suitable choice for ¢ (7,¢) and E(r). But the
way in which this is done provides a better perception of the physical events than is pro-
vided by the formally mathematical approach in accordance with formula (2).

3.2 Rheological models

The creep behaviour of concrete can be made amenable to analytical study by means of
so-called rheological models. These are mechanical models which have, inter alia,
successfully been applied to the schematization of the visco-elastic behaviour of plas-
tics and of metals at high temperatures (see Fig. 4). The basic elements of these models
are the spring and the dashpot.

The relation between stress and strain for a linearly elastic material (conforming to
Hooke’s law) can be schematized by means of single spring. It is expressed by the
formula:

o= FEe 3)

A piston pierced by small openings and moving in a cylinder filled with a fluid (e.g.,
oil) forms a damping device called a dashpot which can suitably schematize the relation
between stresses and strains of a purely viscous material (Newtonian substance).

E n
G G
bl A f 4
1 1
de
— ¢ > at

Fig. 4. The basic elements of rheological models: spring and dashpot.

11



Application of a load to this model does not produce a directly occurring strain, but it
does produce a rate of strain. Hence there is a time-dependent strain behaviour ex-
pressed by:

de
o=ng “)

The two elementary rheological models that can be built up from these basic elements
are the Maxwell model and the Kelvin-Voight model respectively. These comprise a
spring and a dashpot, connected in series and in parallel respectively (see Fig. 5).

The strain behaviour of these models can be characterized by the strain-time diagram
for loading and then unloading. Under sustained load the Maxwell model can in prin-
ciple attain an infinitely large strain and will on unloading display only a directly occur-
ring elastic recovery. The time-dependent strain behaviour of this model can be des-
cribed as delayed plastic. The Kelvin-Voight model, on the other hand, is characterized
by a delayed elastic strain behaviour. A sustained constant load will in the end result in
a finite strain of this model. On unloading, this strain will in the end be completely re-
covered, i.e., it will disappear.

3.3 Maxwell model with time-dependent parameters; irreversible creep

Both the rheological models shown in Fig. 5 are too incomplete for schematizing the
material behaviour of concrete. This situation can be improved by conceiving the prop-
erties of the spring and the dashpot as time-dependent. The implications of this will be
elaborated for the Maxwell model.

n —_ t

Fig. 5. The two elementary rheological models.
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The constitutive equation of a spring with a time-dependent stiffness is: *

do de

while for dashpot:
de
o=n() ¢ ©6)

The series connection of spring and dashpot is characterized by the constitutive equa-
tion:

de 1 do 1
[ O TAPION @

With the aid of (7) it is possible to make a comparison between the time-dependent
strain behaviour of this model and that of concrete as defined in Chapter 2. To this end,
equation (7) is solved for a constant load ¢ =1 applied at time = r:

1
O =EG
de 1
de ™ (0

()= gy +/ O =1 () ®

where:

—

t
0= {7

The behaviour of ¢(#) for several values of ris indicated in Fig. 6. From equation (8) it
follows directly that all the curves in the diagram are parallel to one another. The choice
of the shape of these curves is free, subject to their having an upper limit formed by a
horizontal asymptote, since the creep strain will in the end attain a certain finite magni-
tude. It then further follows from (8) that, for large values of z, the value of f(t) —f (1)
will, at the limit, approach zero. According as the age of this model increases, it will
finally cease to exhibit creep behaviour. This last-mentioned inference is not in agree-
ment with the actual observed creep behaviour of concrete. Even very old concrete does
still exhibit some - though modest - creep behaviour.

The curves in Fig. 6 are sometimes called creep functions. A creep function describes
the time-dependent strain behaviour of a concrete fibre which is subjected to a unit load

* g=E(t)eis incorrect. An increase of the modulus of elasticity £ with the passage of time has no
effect on strains due to loads applied earlier on.

13



(1) !

Fig. 6. Parallel creep function curves for the Maxwell model with time-dependent parameters.
The dotted line indicates the time-dependent strain behaviour which occurs if, after load
application at t= 0, load removal takes place at t=r,.

applied at certain point of time. In practical calculations the assumption of parallel

creep functions is often made as a starting point. In the literature this method of analysis

is known as the “rate of creep method”. Its mathematical basis is relatively simple.
Comparison of formulas (1) and (8) shows that:

0]
S ="F"
Furthermore, using the expression:
L1
f(t)= ) —Fx d&
0=1r@
it follows that:
1 1dg
n (l) - Eb dt

and substitution of this into (7) finally gives:
de 1 do 1 de 9
dt ™ E(2) dz+Eb ar ¢ ®)
The constitutive equation for concrete has thus been reduced to a simple differential
equation instead of the awkward integral equation (2).
Equation (9), known as Dischinger’s equation, was derived with the aid of a rheo-
logical model. The reader can verify for himself that this equation can alternatively be

obtained from equation (2) by substitution into it of: ¢ (7, ) = ¢ () — ¢ (7) and then dif-
ferentiating the equation with respect to ¢

3.4 Rheological model with three parameters; reversible creep

The Maxwell model has an entirely irreversible creep behaviour. Creep strain, once it

14



has been attained, remains permanently after load removal. On the other hand, an enti-
rely reversible creep behaviour is obtained with a three-parameter model as shown in
Fig. 7. It comprises a single spring connected in series with a Kelvin unit. The param-
eters of the Kelvin unit are time-independent, so that the creep behaviour of this model
is independent of the “age” of the model at the time of loading.

The constitutive equation of the three-parameter model in Fig. 7 is as follows:

d’c Eyde 1 d& 1 E dE;'"\d
de Epde 1 0(_ B 1)" (10)

+ =——+|-+ —

df? " m dt” E de’ \y qE " dr | dt

and with the aid of this equation it can be shown that the family of creep functions asso-
ciated with this model is represented by:

e(t):L+i(1—e‘?<’“'>) (t>71) (11)
E](T) E2

These curves have been plotted in Fig. 8. From equation (11) it follows directly that the
creep strain of the model depends only on the load duration 71— 7. The finally attained
creep strain is determined by the magnitude of E, and the creep rate by the quotient
Ez/’]

Eq(t)

Ez

Fig. 7. Rheological model with three parameters; reversible creep behaviour.

e(t)

0 T T2 73

— t

Fig. 8. Creep functions associated with the three-parameter model. For the sake of clarity, in this
diagram, the magnitude of the directly occurring strain has been taken as independent of
the point time rat which load is applied. The behaviour of the time-dependent strain is in-
dicated by the dotted line, for load application at =0 and load removal at ¢= 7,.

15



With the aid of the substitutions:

P (12a)
=— a
N
— Eb 2
0= =F (12b)
E(t) = Ei(1) (12¢)
equation (11) can be written as:
e(1) LI (1— e =) (12d)
E(T) Eb Po
The creep coefficient ¢ (7, ¢) of this model is therefore given by:
o (1,1) = 9o B(t—T1) (13)

where:
Bt—1)=1— e 1)

while ¢, is the creep coefficient for load sustained for an infinitely long period and 6 is

a measure for the rate of strain. These are quantities that can be measured on a concrete

specimen. Hence, with the aid of equations (12a) to (12c¢), the model can be “calibrated”

with regard to the experimentally determined creep behaviour of concrete.
Expressed in ¢, and 6, the constitutive equation (10) becomes:

—+6— ——+
de? " " de E(t) d’

d’e de 1 d%o (9(000 0 dE@1 do 14

E, E(?) Cdr ] de (14
If the strain rate of the model is zero, the dashpot can be omitted, i.e., the force in the
dashpot is then likewise zero. The creep strain at that instant is determined by the con-
nection in series of two springs. For calculating the delayed elastic strain in such a case
an acceptable simple approach is to base oneself on the stiffness E; for load of short
duration and to reduce this stiffness by applying a factor 1 + ¢ . This simple method is

known as the “effective modulus method”.

3.5 Rheological model with four parameters; CEB-FIP creep function

The models considered in the two preceding sections of this article have either an en-
tirely irreversible or an entirely reversible creep behaviour.

As has been noted in Chapter 2, the creep of concrete comprises a reversible and an
irreversible part, however. An obvious approach in seeking to schematize this behav-
iour consists in combining the two above-mentioned models. The four-parameter
model obtained in this way is shown in Fig. 9. It comprises a Maxwell unit with time-
dependent parameters connected in series with a Kelvin unit with time-independent

16
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Fig. 9. Rheological model with four parameters; combination of reversible and irreversible
creep behaviour.

parameters. The Maxwell unit is responsible for the irreversible, the Kelvin unit for the
reversible part of the creep.

The “age” of the model at the time of loading affects the magnitude of the irreversible
creep, but not that of the reversible creep. The “CEB-FIP Model Code for Concrete
Structures”, 1978 [1], proposes this rheological model for schematizing the creep behav-
iour of concrete.

The constitutive equation of the four-parameter model in Fig. 9 is as follows:

d’c Ede 1 do ( 1 1 K dE;l(z))da ( E,  dy (o)
—+— —+ | —+—+ + —+ +
dr® dr El(l‘) dt n(t) m E() dr dr  \man(2) dar

(15)
and the family of creep functions expressed in the parameters E\(1), By, mi(2), 1, is rep-
resented by:

1

! E
e(t) = +]L ! (l—e m - ’>) (16)

7715 E

The “CEB-FIP” creep function is of the following form:

)=+ 5 B0 B0+ Balt=1) an
where:

pq= coefficient for reversible creep strain = 0.4

@, = coefficient for irreversible creep strain, depending on relative humidity
and cross-sectional dimensions (see Fig. 10)

Bq=afunction which describes the reversible creep strain behaviour in rela-
tion to time; in ref. [1] this function is given in graph form; an earlier
CEB-FIP report [2] gives a formula:

Ba=1—e%""") where 6=0.02 [days']

By = afunction which describes the irreversible creep strain behaviour in rela-
tion to time; in ref. [2] this function is given as:

17



coefficients of

ambient relative creep shrinkage coefficient
environment humidity on &1 A
1 2 3 4 5
water 0.8 +0.00010 30
very damp atmosphere 90% 1.0 -0.00013 5
outside in general 70% 2.0 -0.00032 1.5
very dry atmosphere 40% 3.0 -0.00052 1
;=91 Op; @p from (a), ¢p from (b)
2.0 I Ar—
\1.85
1.70
1.6 \\ 155 N——
P12 \& theoretical thickness*
— 1.2 2(24)0) v
12 2 (mm) (days)
< 50 300
100 400
0.8 ] 200 600
400 1000
800 1600
0.4 A > 1600 2800
* 4 = cross-sectional area
0 = perimeter
0 A A = from (a)
<50 200 400 600 800 21600

— - theoretical thickness (mm)

Fig. 10. Calculation of creep coefficient according to “CEB-FIP Model Code for concrete struc-

tures”, April 1978.

From (a) and (b) is obtained the magnitude of the coefficient for irreversible creep for
load of infinite duration. From (c) is obtained the magnitude of the coefficient p in the
function B, in formula (17); y is a2 measure of the rate of irreversible creep strain.

t

By(1) = (;Jr—y,

)1/3

where p depends on the cross-sectional dimensions (see Fig. 10c)

By equating (16) and (17) the parameters E(t), E,, ni(t) and n, of the rheological model

in Fig. 9 can be expressed in the above quantities:

dgr
O 4qr

Ey(t) = Ey(9a) ™"

18
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Thus the four-parameter model has been calibrated for the creep formulation for con-
crete as given in the “CEB-FIP Model Code”. On substitution of the calibrated values of
the four parameters into equation (15) the constitutive equation is obtained in the fol-
lowing form:

de gde_ 1 o [odb 6o, 0 dE<7>1)d_(z (%Eﬁf @fﬁf&)

Tt =+ + + —
dr* * " dt E(t)de* " \E, dt E, E(t) dr | dt \E, dt E, di’

(18)

3.6 Rheological model with three time-dependent parameters

A combination of reversible and irreversible creep behaviour can also be schematized
by means of a three-parameter model with time-dependent parameters, as shown in Fig.
11. This can be done by letting the stiffness of the spring in the Kelvin unit increase up
to a constant value as a function of time. By also letting the viscosity of the dashpot in-
crease as a function of time, a realistic creep model for concrete is obtained. On loading
and then, after some time, unloading of the model, the creep strain that has occurred

will in part be permanent, since the spring in the Kelvin unit has become stiffer during
the load period and undergoes less deformation on being relieved of load than on being
loaded. With increasing “age” of the model the creep behaviour changes from combined
reversible and irreversible to completely reversible. This is more particularly because
the parameters of the spring and dashpot in the Kelvin unit become time-independent
in the long run, with the result that the model will, for large values of 7, turn into the
three-parameter model of Section 3.4. These behaviour patterns will now be dealt with
in more detail.
The constitutive equation of the three-parameter model is:

d2e+(E2+1dn) de 1 d20+(1+ E, . 1 dn+ dE,-l)da (19
de? \n wmdt/dt E d? \y nE  gE dt dr | de
and the family of creep functions associated with this model is described by:
1
R h(t)—h
()= gy + OO — (D) 0)

n(t)

2 G
— ——O -

Ex(t)

Fig. 11. Rheological model with three time-dependent parameters.
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Fig. 12. Creep functions of a rheological model with three time-dependent parameters. For
the sake of clarity, in this diagram, the magnitude of the directly occurring strain has
been taken as independent of the time 7 at which load is applied.

where:
IEZ(‘»Z) " 1 -1
g(r) = exp(jJ ) d¢ and h(t) = (5) ‘ﬂ“(f) (g(%) ‘ dé

A particular choice for E (), E»(¢) and () enables (20) to be written in the following
form:

e(t):E—ET—)+Eib(pw(r)ﬁ(t— T) 21

where ¢, (r) is an arbitrary function and g(¢— r) is given by:
Bt—1)=1—e°=1 (21a)

The family of creep functions expressed by (21) has been plotted in Fig. 12.

¢ (7) is the creep coefficient for load sustained for an infinitely long time. With the
three-parameter model shown in Fig. 11 it is possible to choose this coefficient arbitra-
rily, depending on the time of load application 7. The effect of the age of the concrete on
the creep behaviour can therefore be incorporated into this coefficient ¢, (r), which, on
the evidence of the experimentally determined creep behaviour of concrete, hastobe a
decreasing function of r which becomes constant for large values of r. In this way two
important creep properties of concrete are taken into account, namely, the lower creep
values with increasing “age” and the reversible creep behaviour of very old concrete.
The curve representing ¢ (r) has likewise been plotted in Fig. 12.

The functions E(¢) and 7(¢) can be expressed in ¢, (f) and 6. On equating (20) and
(21) the following are obtained:

Ey
() = 9. (1)

(22)
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Eb 1 dwoo(t)
= 0+
09 (1) P (1) dt

On examination of (22) and (23) in more detail it is found that % (¢) and E,(¢) do indeed
increase with the passage of time, finally approaching constant values. The creep behav-
iour of the model for large values of ¢ corresponds to that of the three-parameter model
considered in Section 3.4.

The creep function (21) typifies the rheological model discussed here. A character-
istic feature is that the creep coefficient ¢ (7,7) in this case is composed of a product of
two factors ¢, and 8 which are a function of r and of t— 1 respectively. In “Principles
and Recommendations CEB-FIP, June 1970 [3] the creep coefficient o (1,1) is also
given as a product of factors:

o(r,t)=k K-k -ki-k (24)

E(1)

(23)

where:

k. = a coefficient depending on the relative humidity of the atmosphere
ky = a coefficient depending on the quality of the concrete

k., = a coefficient depending on the theoretical thickness of the section
k.= a coefficient depending on age of the concrete at the time of loading
k, = a coefficient depending on the load duration

Numerical data relating to these factors are presented in graph form in ref. [3] (see Fig.
13). In the Netherlands code of practice for concrete [4] the method given for calculating
the creep coefficient ¢ (7,7) is virtually the same.

That code moreover gives a formula for determining k; :

1000(z— 1)

= (25)
"1000(1 — 1) + 40V
where:
ey = 2Ab/0
and:
t— r=the load dupation in days
e, = the theoretical thickness of the concrete section, in mm
Ay = the cross-sectional area of the concrete, in mm?
O =that part of the perimeter of the concrete section which is in contact

with the atmosphere, in mm

It is evident that this creep formulation proceeds from a schematization of the creep
behaviour of concrete by means of a rheological model with three time-dependent
parameters. The product of the factors k., k;, k. and k, in (24) corresponds to the func-
tion ¢ (r) in equation (21):

@w(T)zk('kb'ke'kd (26)
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while the factor k, in equation (24) corresponds to the function 8(r— r) in equation (21).
The function &, (r— r) in equation (25) does not, however, posses the same mathemati-
cal form as 8(r— r) in equation (21a), but they do both have a horizontal asymptote
ki(0)=1 and B(w)=1 respectively. The agreement between the three-parameter
model in this Section and the creep formulation in ref. [4] is therefore not quite exact.
Equations (21a) and (25) can, however, be made to agree with one another as closely as
possible by letting the curves representing them touch each other at the origin.

In this way a relation between the parameter 6 of the rheological model and the
theoretical thickness of a concrete section is obtained:

e

With equations (26) and (27) the relation has been established between the three-
parameter model envisaged in the present Section and the creep formulation in refs. [3]
and [4].

The constitutive equation (19), rewritten in the parameters E(f), ¢ (¢) and 6 is ob-
tained by substitution of (22) and (23) into (19):

2 2 E—] d
d’¢ de 1 da+(6(0w(t)+ 6 +d(,> o (28)

@ a T e\ e TR a Jw

3.7 Concluding remarks

The use of rheological models for schematizing the creep of concrete is not new. On the
contrary, already in a very early stage of modern research on creep the usefulness of
such models was shown by various investigators (for example, see ref. [5]).

All the same, in actual practice, rheological models are not well known, more particu-
larly in relation to national and international codes of practice for concrete design and
construction. The present author accordingly considered it relevant to deal with these
matters rather more fully in these first few chapters than is necessary for the further
treatment of the subject of this article.

Incidentally, it is to be noted that not too literal a physical interpretation should be
given to rheological models. For example, the hardened cement paste between the
gravel particles could conceivably be mathematically represented by dashpots and the
gravel skeleton by springs. Such an approach to the problem is now obsolete, however.
Material technologists have established advanced approximations of the creep behav-
iour of concrete, relying on a definite physical basis.

The object of using rheological models is to give visualizable form to a mathematical
formulation. More particularly in connection with the analysis of the structural con-
sequences of creep an approach of this kind can be helpful by clarifying the problem.
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Fig. 14.
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4 Creep buckling, creep instability

4.1 Introduction

In the preceding chapter some models where discussed with which the strain behaviour
of concrete can be schematized. The present chapter is concerned with the consequen-
ces of this strain behaviour to the deformation behaviour of the concrete structure as a
whole, with special reference to those parts thereof which are loaded in compression.
As is well known, the behaviour of compression members in astructural system is

governed by two phenomena, namely, geometrical non-linearity and physical non-
linearity. The pattern of force distribution in the structure is affected by the deforma-
tions (second-order effects) and the cross-sectional deformations are not directly pro-
portional to the forces acting at the cross-sections concerned. Both phenomena cause
the relation between load and deformation of such a member to deviate from linearity.
In the next Section of this chapter a simple model analysis will be presented to clarify
these effects. Next, in Sections 4.3 and 4.4 the influence of creep upon the geometrical
and physical non-linear structural behaviour will be examined.

4.2  Buckling, instability

The geometrical and physical non-linear behaviour of structures can be analysed in a
clear and readily visualizable manner with the aid of simple discrete kinematic models

[6].

The simplest case is that of the concrete column fixed at the base (see Fig. 14). The

kinematic models illustrated in Figs. 14b and 14c can be used for analysing the short-
term deflection behaviour of the column.

:5F I F 1 F
|
K} |
— .

io
o
1o

—

Analysis of time-independent non-linear effects with the aid of simple kinematic
models.



In these models the column is schematized to an infinitely rigid strut with its defor-
mation properties concentrated at one point. In Fig. 14b this point is at the base; in Fig.
14c the deformation properties are schematized by a deformation element located at
the top of the column. In order to take account of time-independent physical non-
linearity, a certain deformation characteristic can be assigned to the deformation
elements in the models, e.g., a bilinear relation between forces and deformations.

In the model in Fig. 14¢ this is achieved by building up the deformation element from
a linear-elastic spring (with stiffness k) and a sliding element (with frictional force N).
So long as the force in the deformation element is smaller than N the deformation
behaviour is determined by the spring. But as soon as the force is equal to, or larger
than, N the frictional force in the sliding element is exceeded and the deformation can
then increase indefinitely. With the models in Figs. 14b and 14c it is possible, in a
simple manner, to analyse the non-linear effects in structures composed of elasto-
plastic materials. This will be further elaborated for the model in Fig. 14c.

Consider the model in the condition where the strut is given a deflection ¢ from the
upright position. The horizontal force in the deformation element is then equal to kd,
and if the model is in equilibrium in that condition, the following must apply:

Fo=k-6-L
Hence the buckling load of the model is:
while the deflection ¢ is indefinite.
If the strut already has an initial deflection 0, no buckling will occur when the vertical

load is increased, but a non-linear relation between F and ¢ is found.
From considerations of equilibrium it follows that:

5= ﬁf_l 6 where n= FJF (Fe= kL) (30)

In this expression the factor of safety against elastic buckling of the strut is #. F in-
creases the initially existing deflection by a factor nfn—1.

Since the magnitude of the horizontal force in the deformation element is limited by
the frictional force N of the sliding element, the strut can, at a certain load F, undergo
only a limited deflection d,,,, because otherwise instability will occur.

From considerations of equilibrium we obtain:

NL
émax :T (31)

The relations (29), (30) and (31) are represented graphically in a load-deflection dia-
gram in Fig. 15. The largest possible load F. with which the model is still able to
establish equilibrium is obtained by equating the expressions (30) and 31):

=

N (32)

=
<3| =
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with decreasing load

eq (31)

—»0
Fig. 15. Load-deflection diagram.

where F, is the so-called first-order collapse load, as expressed by:
F,= 7 (33)

Formula (32) is known as Merchant’s formula in the literature.

The designation “first-order collapse load” derives from collapse load analysis. More
particularly, it is the collapse load which is found in a first-order analysis, i.e., an analysis
which does not take account of geometrical non-linearity. If the spring is omitted from
the kinematic model in Fig. 14c, the collapse load of the resulting model is expressed by
(33).

The sensitivity of a structural member with regard to second-order effects can be
estimated quite simply with the aid of equation (32). If Fy and F, are of the same order of
magnitude, second-order effects may play a part. On the other hand, for example, if F} is
large in relation to F,, second-order effects need not be considered in calculating the
loadbearing capacity.

4.3 Creep buckling and creep instability with reversible creep

The results obtained in the preceding Section are applicable to the short-term deforma-
tion behaviour of the column in Fig. 14c. In order to analyse the effect of delayed defor-
mations of concrete upon the deflection behaviour of the column, the model shown in
Fig. 16 can be used, if the concrete is in the uncracked state.

In this example a rheological model with three time-independent parameters has
been incorporated in the deformation element in which the deformation behaviour of
the column is assumed to be concentrated.

The load-deflection diagram of the column model is shown in Fig. 17. The point of
time at which the condition of the model is considered is of importance. For load of
short duration (= r), equation (30) holds, with k= k.

For load of long duration (= o) the magnitude of the deflection can be calculated
from:
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Fig. 16. Kinematic model for studying the effect of reversible creep on the geometrical non-
linear behaviour.
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A Fp creep buckling
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X
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Fig. 17.  Load-deflection diagram for short-term (t=r) and for long-term load (t= o).

nm -~ Fkoo

8(w) = 6,  ne=—r (34)

where Fy., is the so-called creep buckling load. For loads smaller than Fy.., the centri-

cally (axially) loaded straight strut, after being under load for an infinite length of time,
is still in stable equilibrium:

k] k2

Fio = itk L (3%5)
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The equations (35) and (34) can be derived directly from (29) and (30) by connecting in
series the springs with stiffnesses k; and ky, from which an “equivalent” stiffness

kil
ki + k,

is obtained for 1= o, without further effect of the dashpot.

As seen in the diagram, the largest load that the model can support after infinitely

long load duration can be determined by equation (31) and (34):

1 1 1
H = E: + Fp (36)

If, under constant initial load, the deflection of the strut so increases as a result of creep

that the maximum permissible deflection nax according to (31) is attained, the model

becomes unstable at #< co. In that case there is said to be creep instability.
Depending on the magnitude of the initial load, two different cases may occur:

1. Ifaload F, < Fi., is applied at a point of time ¢= 7, an initial deviation & will be in-
creased by F; in accordance with (30). The short-term deviation ¢ () will, as a result
of the creep of the rheological model, subsequently undergo a further increase to
6 (). Hence, on application of Fy, first a path A-B will be traversed in the load-
deflection diagram and then, under constant load, the path B-C. The equilibrium of
the column remains stable.

2 If the load is increased to a value F, > F.., at a point of time ¢= 7, the path A-D is
traversed in the load-deflection diagram. Then the deflection will, under constant
load, increase until point E is reached after a time. The deflection cannot further in-
crease under constant load, and therefore instability occurs here in consequence of
creep, at a time 1< .

So far, the rheological model has been taken into account with the parameters k; and k.

With k, = ki/¢ .. the results can be expressed in the creep coefficient for load of infinite

duration ¢.,, as defined in Section 3.4 of Chapter 3.

The creep buckling load F, is then written as:
Fy

ka:1+¢m

(37
and the long-term loadbearing capacity (i.e., the strength of the structure under
sustained load) F,.. as

1 l+9. 1

Fo = A +E (38)

The ratio of the long-term loadbearing capacity to the short-term loadbearing capacity
is obtained on dividing (32) by (38):

L

FCoo_- +E
F. F,
I+ 9o +%
F,

28



1.0 l -
(p =1 I
lm""
08 =
Feoo T P02 | |
F e
c pr= p—
0.6 = (
(p03=3
o.z.//
/
4
0.2
0 1 2 3 LF 5
_— _k
Fp

Fig. 18. Reduction of loadbearing capacity of the kinematic model by creep as a function of the
ratio Fy/F, and the creep coefficient g.,.

In Fig. 18 the creep sensitivity F,. |F, as a function of the ratio F,/F, is represented for
creep coefficients g, = 1, 2 and 3. This diagram clearly shows that the effect of creep is
great if Fy is small in relation to F,. “Translated” into an actual concrete column, this in-
dicates high creep sensitivity of slender columns subjected to virtually centric load.
Relatively short and stocky columns and/or columns under considerably eccentric load,
on the other hand, are hardly sensitive to creep. Incidentally, these are conclusions
which are in good agreement with what can be supposed on intuitive grounds.

4.4 Creep buckling and creep instability with irreversible creep

In order to investigate the effect of the choice of the rheological model, the analysis
presented in the foregoing Section will be repeated here with reference to the model
shown in Fig. 19. The material strain behaviour will now be schematized by the Max-

well model with time-dependent parameters as envisaged in Section 3.3. For the sake of
simplicity the stiffness of the spring is assumed to be time-independent.

In Chapter 3 the constitutive equation for the Maxwell model, expressed in the creep
coefficient g, was derived. For this model the relation between a horizontal force i and
a change in deformation doé is expressed by:

dé 1dH 1dg
T rkdatra 40)
The moment equilibrium of the model in Fig. 19 in a deflected condition is formulated
by:

Fo=H-L 41
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Fig. 19. Kinematic model for studying the effect of irreversible creep on the non-linear behav-
iour of a column.

Elimination of H from equation (40) and (41) gives:

1do 1 do F,
Sdi—n—1dr where n=7 42)

Finally, after integration, the following expression is arrived at:

6(t) = 6(r) exp i_(}_? (43)

With reference to this solution it can be shown that the centrically loaded straight strut
is always in equilibrium so long as the load F is smaller than the buckling load Fj, for the
exponent in equation (43) becomes indeterminate only for n=1, i.e., F'= F,.The creep
buckling load F,. is therefore equal to the short-term buckling load Fj.

If the strut has an initial deflection & at the time of load application, the functional
behaviour of the time-dependent deflection 6 (¢) is obtained from (43) by substituting:

6(r)=7—79 (44)

The deflection at time = o is obtained from (43) by substituting for ¢ (7, ¢) the creep
coefficient for load of infinite duration @ :
n

()= _Sexp 22 (45)

1 n—1
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Equations (44) and (45), together with the expression for the maximum possible deflec-
tion dm,y, €quation (31), are represented graphically in Fig. 20, which in principle cor-
responds to Fig. 17 considered in the preceding Section.

The load corresponding to the intersection of the curves for (31)and (45) is here again
defined as the long-term loadbearing capacity F.., (i.e., the strength under sustained
load). Loads larger than F,, can be supported for a short time, but will in course of time
give rise to creep instability.

The magnitude of F,,, is found by equating (31) and (45). It is not possible, however,
to arrive atan explicit expression for F,., as a function of ¢, , F; and F, because this pro-
cedure yields a transcendental equation:

F -
ﬂ§=”

5 ex b= where n= Fi
F.o n—1 P -

n—1 F.o

(46)

A solution for F,,, can be obtained without an iterative procedure as follows:
Using the auxiliary variable a, write F.., in the form:

1 1 1

F. " F‘af (47)

Plot a graph of

F,
F 7=

as a function of @ as expressed by:

F, 11
R =aMa (48)
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Fig. 20. Load-deflection diagram for short-term (t=r) and long-term load (t= o).
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Now « can be determined as a function of

FP
F O
and F.., follows directly from equation (47).

The ratio of the long-term to the short-term loadbearing capacity is obtained as the
result of dividing equation (32) by (47):

Fy

F. 'TF
IC;’ = Fp where « is in accordance with equation (48) (49)

c k

14—

aF,

In Fig. 21 this expression for the creep sensitivity as a function of the ratio F/F,hasbeen
plotted for creep coefficients g =1, 2 and 3.

The curves for reversible creep, obtained in the preceding Section, have also been
included in this diagram.

Appreciable differences between the two analyses are found to occur only for small
values of Fi/F,. This result is to be expected. If the buckling load is small in relation to
the first-order collapse load F,, non-linear effects will play a major part. The creep
effects will be correspondingly large. According as the deflection of the kinematic
model increases as a result of creep of the rheological model, the force in the latter will
increase with the passage of time. Differences between rheological models manifest
themselves more prominently as the loads applied to them undergo a larger change in
course of time. In general, for load increasing with time, a larger deformation is calcu-

1.0
Do =1 et — |
0.8 e
- ]
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Fe / j i — 1T L -
06 \\, b — LA~
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% irreversible creep
0.2 —— — reversible creep
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Fig. 21. Reduction of loadbearing capacity of the kinematic model by reversible creep and by
irreversible creep, as a function of the ratio F,/F, and the creep coefficient ¢, .

32



lated on the basis of reversible creep than on the basis of irreversible creep. Onthe other
hand, with decreasing load the deformation found for reversible creep is smaller than
that found for irreversible creep. In the foregoing analyses the rheological model is, as
stated, subjected to load of increasing magnitude, and for this reason the creep effects
are greatest in the model embodying reversible creep behaviour.

The considerations presented in this Section and in the preceding one apply to com-
pletely irreversible and to complete reversible creep respectively. These represent two
extremes. The actual creep behaviour of concrete is partly reversible and partly irrever-
sible. If the foregoing analyses are performed with a rheological model that takes
account of this, a curve is obtained which is situated between the two curves found
earlier on (see Fig. 21). In this case the basic assumption of completely reversible creep
determines a lower bound for the long-term loadbearing capacity of the column model,
whereas the assumption of completely irreversible creep gives an upper bound.

5 Steel-concrete columns
5.1 Introduction

The kinematic models described in the foregoing make it possible, in a simple manner,
to form an idea of the effect of creep on the behaviour of a column. Strictly speaking,
these models are applicable only to plain (unreinforced) concrete columns which are
uncracked. The effect of steel reinforcement in a concrete section cannot be investiga-
ted with these models. A model that does allow such investigation is shown in Fig. 22.
Just as in the models considered in Chapter 4, here too the entire deformation behav-
iour is conceived as concentrated at one point. The steel in the column is represented
by two deformation elements comprising a spring and a sliding element, while the
concrete is again represented by rheological models. In the model shown in Fig. 22,
Dischinger’s Maxwell model is employed.

5.2 Time-dependent deformations

The kinematic model in Fig. 22 has two degrees of freedom, namely, a compression A
and an angular rotation expressed in a deflection ¢ at the top.

Starting from an initial deflection 5, the behaviour of 6 and A as functions of time,
after application of a constant centric (axial) load F, is expressed by:

A(t)=1{A Fex(—r)F h __k 50

()= (T)_E p(—rp +7(—S where Ak (50)
st -~ _ st st—F

5(1) = 6(r)——st_Fél eXP (“HO) + =" where v=p—F G

In these equations:

F,, =buckling load of the column
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Fig. 22. Kinematic model of steel-concrete column. The steel is schematized by elasto-plastic
deformation elements, the concrete by rheological models.

F,, = buckling load of the column when only the stiffness of the steel is taken
into account
k. = compressive stiffness of the concrete
k, = compressive stiffness of the steel
A(r) and 6(r) are the deformations directly after application of the load.

The effect of the steel in the section can be expressed in two stiffness ratios r and
Fys| Fy.. The first is the ratio of the compressive stiffness of the steel section to that of the
entire section; the second is the ratio of the flexural stiffness of the steel section to that
of the entire section. The time variable 7 does not occur in (50) and (51). It is comprised
in the creep coefficient ¢, which is a function of r and ¢ namely:

p(nt)=0()—0(7)
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If the load F can, to begin with, be resisted elastically, then A(r)and 6(r) are given by:

o(r)=——0

n
n—1

with which (50) and (51) can be rewritten as:

F F F

A(t) = m—;}eXp (=rp) + 1 (52)
F Fy ~ Fis

6(Z): iE -/iF— quI:_F} 0 exp (_y¢)+Fkxk—F (53)

In Fig. 23 the axial displacement A as a function of the stiffness ratio ris represented for
creep coefficients ¢ = 1,2 and 3. In Fig. 24 the relation between ¢ and F for various va-
lues of the flexural stiffness ratio Fy,/F, has been plotted for a creep coefficient ¢ = 1.
In these two diagrams A(r) and ¢ (r) have been made dimensionless by dividing them
by the directly occurring (elastic) deformations A(r) and 6 (r).
In both diagrams the effect of the steel on the deformations is clearly manifest. Thus,
for a creepcoefficient g = 1, the steel brings about a reduction of 50% in the axial dis-
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Effect of the relative quantity of steel r
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placement as compared with the plain concrete column, for a stiffness ratio r=0.4. The
reducing effect of the steel on the deflection depends not only on the flexural stiffness
ratio fi.,/Fy, but also on the magnitude of the load Facting on the column. For a value of
0.5 or this latter ratio and a load F= 0.5F the reduction for the reinforced with the plain
concrete column is 45%. If this load is halved, the reduction percentage in this cases
decreases to 18.

5.3 Internal force distribution

The distribution of internal forces changes in consequence of creep. As a result of in-
creasing deformation under constant load there occurs an increase in the magnitude of
the forces acting in the steel. Thus the normal force in the steel changes, as a function of
time, as follows:

N(t) = ksA(f) (54)
and the normal force in the concrete:
N (t) = F— k; A(?) (55)

In Fig. 25 these equations (54) and (55) have been plotted qualitatively ina graph. As a
result of creep there occurs a redistribution of the internal normal force in that the con-
crete is relieved of load and the steel is subjected to greater load.

Depending on the magnitude of the creep coefficient g and the stiffness ratio s, this
redistribution will take place to a greater or less extent. The relative increase in the
normal force acting in the steel is greater according as the stiffness ratio ris smaller. The
relative decrease in the normal force acting in the concrete is greater according as ris
larger, i.e., if there is more steel in the section.

The internal distribution of bending moment can be deduced from equation (51).
The steel moment as a function of time is:

M, (1) = Fi, {6 () — 6} (56)

yy Y

N¢ (1) eq. (54)

Ng(t) eq. (55)

vy

— t
Fig. 25. Redistribution of internal normal force due to creep of concrete.
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Fig. 26. Change of internal steel and concrete moments due to creep of concrete.
(a) The column load is smaller than Fy,. The internal concrete moment decreases due to
creep.
(b) The column load is equal to F,. The internal concrete moment is constant, i.e., does not
vary with time.
(¢) The column load is larger than Fis. The internal concrete moment, like the steel
moment, increases due to creep.

and the internal moment in the concrete is:

M (1) = F5(t) — Fi, {6(1) — b}
= Fiy 6+ {F— F,}6 (1) (57)

With increasing deflection of the column, the steel moment increases proportionally to
it. The moment exerted by the axial force F upon the column section of course also in-
crease. Now it depends on the magnitude of F whether the moment developed by the
concrete will increase or decrease in consequence of creep. If the load on the column is
smaller than the buckling force of the steel Fy,, then, with increasing deflection, the
steel moment will undergo a greater increase than will the moment acting upon the sec-
tion. Therefore in this case the concrete moment will decrease in course of time. On the
other hand, if the load is larger than Fj,, the concrete moment will, like the steel
moment, increase in course of time. These relationships are qualitatively represented in
graph form in Fig. 26.
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5.4 Creep sensitivity

In the preceding Chapter it was concluded that the effect of creep on the loadbearing
capacity of a column, besides depending on the creep coefficient ¢, is dependent on the
magnitude of the buckling load F; in relation to the first-order collapse load F,. Here it
must be added that the quantity of reinforcing steel in the section is also an important
parameter. The creep sensitivity of a reinforced concrete column can therefore be high
if the creep coefficient is high, the slenderness ratio is high, the load eccentricity is low,
the material is of high strength and the percentage of reinforcement is low.

These relationships are indeed very reasonable on purely intuitive grounds. The ob-
ject of the present article has been to present them in a readily visualizable manner. The
present treatment is, however, rather qualitative in character. In order to obtain a better
idea of the quantitative effect of creep, some numerical values published by Bernard
Fouré [7] will now be given. These are based on computer calculations for reinforced
concrete columns. In that analysis the long-term loadbearing capacity F.., is compared
with the short-term loadbearing capacity. The parameters of a standard column - such
as the slenderness ratio, reinforcement percentage, etc. - are varied and the effect of this
on the creep sensitivity is investigated. The standard column is of rectangular cross-
section, is symmetrically reinforced (reinforcement 0.2%), and has a slenderness ratio
L/h=25. The load acts with constant eccentricity ¢ = 0.1/, while the creep coefficient
is o =2.

On varying the respective parameters the following results are obtained:

Variation of the slenderness ratio LA

Lih 10 15 20 25 30 40 50

Fo
F,

088 077 069 0.65 058 052 0.50

Variation of the eccentricity e,
efh 0.03 0.05 0.10 020 030 050 1.00

Feo
F.

0.66 0.65 0.65 072 0.79 0.84 0.90

Variation of the reinforcement percentage o
o% 0 0.05 0.1 0.2 0.3 0.6 1.0

Feo
F.

046 051 057 065 071 078 0.82

Variation of the creep coefficient ¢,
@ 0 0.5 1.0 2.0 3.0 4.0

Feo
F,

1.o0 087 078 065 0.57 051

38



The standard column in this example has only a low reinforcement percentage. From
the table given above, however, it is apparent that even this reinforcement brings about
asubstantial reduction in creep sensitivity as compared with the plain concrete column.
It further emerges from these tables that even a low value of the creep coefficient ¢,
causes a relatively large decrease in the loadbearing capacity of the column. The effect
of the magnitude of the eccentricity ¢, is practically constant for values of ¢; smaller than
0.1h. If ¢ is increased, there is a rapid decrease in creep sensitivity, and if ¢, is of the
order of 2/ to 34, the creep of the concrete plays practically no part in determining the
magnitude of the loadbearing capacity of the column.

6 Summary and conclusions

The effect of creep of concrete on the physical and geometrical non-linear behaviour of

(reinforced) concrete columns can be analysed in a suitably visualizable manner with

the aid of a combination of a kinematic and a rheological model. At first sight such a

model shows little resemblance to an actual column. The mechanical behaviour of the

model under short-term and under long-term (i.e., sustained) load can, however, be ex-
pressed in quantities that are applicable to an actual column.
These quantities are successively:

- The Euler buckling load, defined as the (centric) load in excess of which no stable

equilibrium is possible.

- The first-order collapse load, defined as the collapse load obtained when no second-

order effects are taken into account.

- The reinforcing steel percentage.

- The creep coefficient, defined as the ratio of the creep strain of a concrete fibre under

constant stress and the directly occurring strain.

With the aid of the models presented in this article, and by means of a simple approach,

the following conclusions as to the short-term and the long-term loadbearing capacity

of a column are arrived at. In this context two different cases are to be distinguished:

1. If the Euler buckling load of a column is large in relation to the first-order collapse
load, second-order effects will pay a minor part and need not be taken into account in
the analysis. In that case the deformations due to creep have no effect on the load-
bearing capacity of the column either.

2. On the other hand, if the Euler buckling load is only a few times as large as the first-
order collapse load (or even smaller), a non-linear method of analysis should be used
for the column. In consequence of creep the loadbearing capacity may, depending on
the magnitude of the creep coefficient, undergo a considerable reduction.

The first case relates to short and stocky columns or to columns under highly eccentric

load. The second relates to slender columns with high material strength which are

under predominantly centric (axial) load. The creep sensitivity of such columns can be

modified in a favourable sense by the incorporation of extra steel reinforcement.
With the models presented in this article it is possible in a relatively simple manner to

derive expressions for the time-dependent deflections and shortening deformations.

39



These results are quantitatively applicable to actual (reinforced) concrete columns.

The mathematical formulation of the creep of concrete calls for the following com-
ments. The creep behaviour can be characterized by a family of creep functions. Time-
dependent deformations of concrete structures can be calculated on the basis of these
creep functions and by applying the principle of superposition. A calculation procedure
of this kind leads to integral equations which are not amenable to mathematical treat-
ment, though analytical solutions are possible in special cases. In general, however,
numerical methods of solving them will have to be used.

If a more conveniently visualizable analytical approximation is desired, rheological
models can successfully be employed. These lead to differential equations which are
more readily accessible to mathematical treatment. Essentially the choice of a rheolog-
ical model amounts to choosing a family of creep functions of special mathematical
form. The latter is determined by the structure of the model. In this sense, therefore, a
method of analysis which is based on a rheological model is less general than one which
is based on arbitrarily chosen creep functions. This need not, however, be an obstacle to
practical calculations, considering that there is an infinite number of possibilities in
‘constructing a rheological model.

With a rheological model a mathematical formulation of creep behaviour is present-
ed in a form that can be visualized, so that insight into the structural consequences of
creep is improved. This of course can provide an important argument in favour of using
such models.

Two methods of analysis well known in the literature are based on rheological
models, namely, the “effective modulus method” and the “rate of creep method”. In the
first of these two methods the creep of concrete is assumed to be completely reversible,
whereas in the second it is assumed to be completely irreversible. Although both these
approaches are no more than approximations of the actual creep behaviour of concrete,
quite serviceable creep calculations can be done with both of them. The advantage of
the “effective modulus method?” is that it can provide a good idea of the creep sensitivity
of a concrete structure on the basis of a simple calculation. Its simplicity is due to the
straightforward reduction applied to the stiffness of the concrete, so that creep is con-
ceived as occurring directly. The “rate of creep method” involves solving a first-order
differential equation. Even so, it is still a relatively simple method, and the creep defor-
mations calculated in this way are in general amply accurate for practical purposes.

If the concrete stresses in a structure increase in course of time as a result of creep, an
upper bound for the time-dependent deformations is found with the aid of the “effec-
tive modulus method?”. If the concrete stresses decrease in course of time, the “rate of
creep method” enables an upper bound for the creep deformations to be determined.
Concrete stresses increasing with time may occur, inter alia, in slender concrete
columns containing a low percentage of reinforcement (less than about 2%); concrete
stresses decreasing with time may occur, inter alia, in columns with a high reinforce-
ment percentage and in prestressed concrete beams.

The creep formulations contained in the CEB-FIP guidelines of 1970 and 1978 are
likewise based on rheological models. In these models the combined reversible-irrever-
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sible creep behaviour of concrete has been taken into account. In principle, accurate
creep calculations can be done with these models, but of course it is of major impor-
tance to introduce correctly estimated creep coefficients. It is often advisable to do
several creep calculations into which minimum and maximum anticipated creep values
are successively introduced.
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