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GEOMETRICAL NON-LINEARITY IN COLLAPSE ANALYSIS OF THICK SHELLS,
WITH APPLICATION TO TUBULAR STEEL JOINTS

Summary

Geometrical non-linearity is important, not only in problems involving elastic instabil-
ity of thin structures, but also where they influence collapse in the material non-linear
range involving thicker members. Using a continuum approach, this paper presents the
basic principles of the general finite element formulation for thick shells that have been
incorporated in an existing general purpose computer program suite DIANA with a
very modular architecture [1]. The common assumptions of classical plate or shell theo-
ries have not been applied. Material non-linearity has only been mentioned briefly,
where it involves plasticity in structural steel.

A comparison with the collapse analysis of a steel shell using conventional classical
plate/shell theory is presented to illustrate variations that are ignored in classical
theory. Experimental results on the collapse behaviour of a tubular steel T-joint are
briefly compared with a numerical simulation, where the theoretical effects of geo-
metric or material non-linearity alone are also presented.






Geometrical non-linearity in collapse analysis
of thick shells, with application
to tubular steel joints

1 Introduction

The analysis of plates and shells have in the past been carried out by formulations based
upon classical thin plate Kirchhoff [2] theory, where shear deformation is ignored. This
implies that normals to the mid-surface remains normal after deformation. This
assumption is not suitable when moderately thick plate structures are also to be anal-
ysed, where shear deformation is not negligible. Mindlin [3] plate theory, sometimes
referred to as Reissner [4] plate theory, allows for shear deformation, where normals
remain straight, but not necessarily normal to the mid surface after deformation. The
latter theory has been developed by Ahmad, Irons and Zienkiewicz [5] using assumed
displacement based finite elements.

Ahmad et al. [5] use a degenerated three dimensional solid element and a “super-
parametric” formulation, where the finite element formulated with simple coordinates
ina parent element is “mapped” into a distorted form to a new curvilinear set when plot-
ted in cartesian space. Curvatures in the plate and the element sides can thus be model-
led. This approach has been modified for geometrical non-linearity and incorporated
into the general purpose displacement based finite element computer program
“DIANA”, developed at the Institute for Building Materials and Building Structures
(IBBC) of the Netherlands Centre of Applied Research (TNO). Although such modifi-
cations to include non-linearity to the degenerated shell formulations have recently
been presented by Ramm [6], Krakeland [7] and Bathe et al. [8], it will be presented
again in simplified matrix notation because of the ease of implementation in a com-
puter program. Also, the presentation is deliberately simplified for users of the formula-
tion with a basic knowledge of energy methods, calculus (including Taylor’s expan-
sion), vector and matrix algebra to follow the assumptions and limitations thoroughly.
Reference should also be made to the book by Zienkiewicz [9]. The element formula-
tion, including non-linearity, has been introduced without recourse to any classical
plate or shell theory and treated in generality as in the analysis of continuum problems,
where no assumptions are made on the magnitude of deformations or rotations. There-
fore, large displacements or large rotations in any arbitrary direction of the shell can be
modelled.

This paper only discusses the background pertaining to geometric non-linearity, with
only the necessary details on material non-linearity mentioned, where relevant. The
computer program DIANA uses a number of non-linear stress strain relationships to
cover a large range of material behaviour that has been presented elsewhere [10].

Various bench mark tests have been carried out to check the formulation and some of
the interesting comparisons are described.



2 Basic assumptions

1. The normals to the mid-surface remain straight after deformation and do not extend.
By constraining the normals to remain straight, the error in shear deformation is
small.

2. The strain energy corresponding to the stresses perpendicular to the mid-surface is
ignored. This improves numerical conditioning by omitting the stiffness coefficients
which become large when the shell thickness becomes small in comparison to the
other dimensions of the element.

3 Coordinate transformations

Consider the typical thick shell element (Fig. 1) which is curved in and out of plane.
Nodes “” and thickness vector 173,- connecting the upper and lower points iy, and ivottom
across the thickness of the element at the boundaries prescribe the element shape.Zand
# are two curvilinear coordinates in the mid-span of the shell and Za linear coordinate
in the thickness direction, which vary between — 1 and 1 on their respective faces.

The relationship between the cartesian coordinates and the curvilinear coordinates
are given by:

X 8 Xi 8 Xi
1+¢ 1-¢
y=ZM(2)y,- +ZN,~(—2—)y,- (3.1
i= i=1
z Zi Jtop Z; ) bottom

where subscript “i” refers to a node number, and & is a function which is unity at node i
and zero elsewhere.

N;are derived as shape functions of a square parent element that satisfy compatibility
at interfaces. Because the functions for the element with one mid-side node are para-
bolic in £ and #, the sides of the element can take a parabolic form in x, y, z cartesian
coordinates.

Expression (3.1) can be rewritten with respect to the mid-surface coordinates and a
vector connecting the top and bottom surface nodes.

X 8 Xi 8 z
yi=Y Nlyt+ X Nig Vs (3.2)
zZ = Z; i=

N;=3(1+ &)(1 + no)(& + no — 1) for the corner nodes,
(1+ &)(1 — *) for mid-side nodes with &= +1, =0, (3.3)
(1= &%)(1 + no) for mid-side nodes with &=0, 7= £ 1

= = B

with & =& & and no= n-4i

Xi Xi
Vii= {yi — Vi
Zi Jtop Zj J bottom



The above functions are quadratic in £and » as prescribed by the use of one mid-side
node. Once this relationship between the cartesian and curvilinear coordinates is estab-
lished, it would be easier to work with the curvilinear coordinates as the basis.

{=1(Top surface)

y g=—1
ey e

global axes

I
04 § q

L
o0

parent element

note: x'y'z'coincide
. — —
with vectors Vy,, Vi,
e
V3j at the nodes
nodal vectors

local axes

Fig. 1. Thick shell element.

4 Displacement field

In a three dimensional solid element, the element displacement functions would be
defined by three cartesian (global) components of the displacement at each node of the
element.

However, with the degenerated element, the displacement function is defined in-
stead by the three cartesian (global) components of displacement u;, v;and w; at the mid-
surface nodes “i” and two orthogonal rotations of the thickness (or normal) vector I7'3,-
(defined in section 3) about directions normal to it. In a plane perpendicular to 173,,



there are of course an infinite number of mutually perpendicular vectors. One of these
directions 171,» is therefore arbitrarily chosen to be perpendicular to 173,~ and the global x-
axis. 172,- is therefore the other direction which is perpendicular to 173,-and 17“. If 173,» and
the x-axis should coincide, the computer program checks for this parallellism and
makes V1, perpend1cular to V3, and the y—ax1s instead. As given in Fig. 1, the rotations of
the normal vector V3, about vectors I/1, and V2, are defined as §; and a; in a clockwise
direction.
The displacement field is therefore given as:

u 8 Ui z a

V= Z N; {vi +]Vi_[V]i_V2i]{ li 4.1)
i=1 2 ,3,~

w w;

where u, vand w are cartesian (global) components of displacement within an element
mid-surface and u;, v;, w;, a;and 8;are cartesian components of displacements and rota-
tions of the shell element at mid-surface nodes i.

5 Definition of strains

A general definition of strains which is valid whether or not displacements or strains are
large, require to be defined. For convenience in abridging notations, assume the carte-
sian coordinates in Fig. 2 to be given by x;, x, and x3, which in abridged form is x;. Let
coordinates of point A be x;, x, and x; and a point B, infinitesimally close to A, x; + Ax,
X, + Ax; and x3 + Ax; in the initial configuration and X;, X; and X; in the deformed con-
figuration. With deformation of the body, A is displaced through u, u, and u3, whereas B
is displaced through u; + Auy, uy + Au,and us + Ausalong the cartesian axes. Aland A/’
are vectors of initial and deformated line length AB.

(Al)? = Ax{ + Ax}+ Ax? = Ax? (abridged form)

(Al')* = (Ax;+ Au,)’ -1

deformed configuration.

initial (undeformed)

/\cori|gurchon

x5 X X, X

Fig. 2. Deformation of a body under load.



where all subscripts i (or j or k) infer 3 repeated operations with i orjor k=1, 2, 3.
A measure of deformation is then:

(AI'Y — (AN’ =2 Ax; Au;+ Au; Au (5.2)
Now, the Taylors series expansion of u;+ Au; with the origin at u;, is given by:

ou; (Ax;)" 3y,

u,-+Au,-=u,-+ija—xj+... ol a;j (5.3)
Since the Ax; are small, the non-linear parts of 5.3 may be truncated to give:
Au=2 Ay (5.4)
0x;
Substituting (5.4) into (5.2) gives:
(A/’)z—(A1)2=%:" Ax; ij+g—2 %ij Axy (5.5)

where k is introduced as a dummy subscript.
Replacing i by k on the right hand side of equation (5.5) as a dummy subscript and
noting that:

%Axk A)c,z%(%+%)1lxj Ax; (5.6)
ax; Ox;  Ox
we get
(A1) = (AD)? =2 Ax; Ax, (5.7)
where

_1(% au/)  Oup Qu;
%=1\ 3x  oxe +76xj O, (5.8)

In unabridged notation, two of the nine equations (5.8) are:

o, (au2 v\ [ow)

e=ax* 1| \ax) *\ax) *ax (-8
. ou Ov ,|Ou du v dv awaw_1

Exy =17 a—y+é; +5 Ix @-0-5 ®+a 5; =3Vxy (5.8b)

where u, v, ware the x, y, zcomponents of displacement and y,, etc. are called the engi-
neering shear strains. Now, defining a unit elongation of the initial infinitesimal length
Al by e, we get

Al'— Al
e=——F7— (5.9)

now e+je’=3[(Al')’ — (Al)*]JAL (5.10)



Substituting from 5.7 into 5.10:

e+1e? =g Ax; Axi AL’ (5.11)
Now

ij*i Ax,,_}L

AT AT

where 4, and 4 are direction cosines of A/ relative to the x; and x, axes. Therefore,
e+3e’ = eyl (5.12)

Unit elongation eis a definite quantity that is independent of the coordinate orientation
for a given deformation. Therefore g 4;A is invariant with respect to rotation of axes.

¢ are therefore components of a second order tensor, formulated by Green and St.
Venant and is called Green’s strain tensor. They are expressed as functions of the co-
ordinates of the initial undeformated state, i.e., the so called Lagrangian coordinates.

Similarly, expressions for strain may be formed as functions of the coordinates of the
deformed state, the so-calledEulerian coordinates. This form is attributed to Cauchy for
infinitesimal strain and to Almansi and Hamel for finite strain. It is often called
Almansi strain and is given as:

ou, Ou; Ou; Ou,

L O s AT P
I]jk—2|:aX}+an+a)g ox, = Hij (513)

where X; are the deformed coordinates.
If the components of displacement u; are such that their first derivatives are small
compared to unity,
auk auk

ie.x—<1

o ax <! (5.14)

then the squares and products of the partial derivatives of u; are negligible, and n; re-
duces to Cauchy’s infinitesimal strain tensor,

o auk auj 515
%=1\ 3% * duy (5.15)

so that in the case of infinitesimal displacement, the distinction between Eulerian and
Lagrangian coordinates disappears when expressing strain.

Since this paper deals with the numerical formulation where an initial (or total)
Lagrangian coordinate system is used, the Eulerian system has only been mentioned
briefly.

6 Green-Lagrange strains in element

Because of the basic assumptions, the strains have to be related in directions of
orthogonal axes to the surface {= constant. Thus z’ represents a normal to the surface

10



and x’, y’ two other orthogonal axes tangent to it (Fig. 1). Therefore, x', y’, z’ are consid-
ered to be parallel to vectors I/1, V V3 respectlvely, u',v', w' represent displacements
along the local axes x ,y z respectlvely Vl, Vz, V3 respresent vectors within an element
mid-surface whereas Vl,, Vz,, V3, represents values at mid-surface nodes i.

The strains are given by:

{e'}={eL} + {ern} (6.1)
where:
£y
&
n= | 6.2
{e'} .y (6.2)
Vy'z
2%
ou'[dx’
av'[ay’
. |ow'[oz’
tei} = du'[oy’ + dv'[ox’ 6.3)
ov'[dz' + dw'[dy’
ow'[dx’ + 0u’'[dz’,
and:
3(0u'[9x’ ) +3(3v'/ox")? + 1(@w'[dx’ )
3(0u'[ay")? +3(3v'[dy’)? +3(dw'[dy’ )
(k) = 3(0u’[dz’ ) %(8v’/62’)2+51(6w 'loz' ) (6.4)
M (@u'jax)(Bu'[ay") + (v'[ax") (3v'[ay") + (@w'[ax") (Bw'[ay") '
(
(Ou

)
ou ;ay ))(au’/az )+ (@v'[ay")(0v'[9z") + (Ow'[dy")(Bw'[dz")

0u'[0x’, etc. represent strains in the local axes x', y’, z’. The strain in direction z’,
although present to facilitate transformations between the various coordinate systems,
is neglected. Since none of these directions coincide with the global Cartesian coordi-
nates x, y, z or the curvilinear coordinates & n, ¢, a relationship must be established.

(0u'[3z") + (0v'[3x")(dv'[dz") + (Ow'[dx")(dw’[Dz")

7 Determination of transformation matrices and vectors

The displacements (4.1) are given with reference to the curvilinear coordinates. The
derivatives of these displacements with respect to the global x, y, z coordinates are given
by:

11



Qu/dx v[dx Ow[dx du[d& 0v[dé Ow[dE
dujay dvjdy dw[dy |=[J]"|dufdn dv[dn dw/dn (7.1)
du/dz dv[dz Ow/dz ou[dZ [0 Ow[d

where the Jacobian matrix [J] is defined as:

ax/0Z By[d 9z/d¢
[J]=|0x/dn ay[dn dz/on (7.2)
ax/o7 dy[dZ 98287

and is calculated from relationship (3.2) as follows:

AN, 70N,
?f 20Z
8 .
aN,' ZaN, Xi Vi Zi
Yol ¢ o 2 7.3
V1= 215y 20 (P} (7.3)
0 N;
2

Derivates of displacements with respect to global axes having been determined by (7.1),
the transformation has to be carried out into the local axes x’, y’, z'. In order to do this,
the thickness (or normal) vector 173 anywhere within the element has to be determined.
At the nodes, 173 relates to the nodal thickness vectors 173,. Anywhere on the shell sur-
face defined by (3.2), the tangents in direction parallel to the curvilinear coordinates are
defined by their partial derivatives with respect to £ and #.

The two vectors are therefore

dx/0& dx/0n
dy/oé; and {9dy/dn
0z/0¢ 9z/dn

The vector perpendicular to the plane defined by the above two vectors gives 173 and is:

dy 9z 0y 0z
dZdn 9y df
- 0x 0z 0xO0z
V3= 3702 3fay (7.4)
dxdy 0x9dy
|90y 07 0Z |

The orthogonal vectors 171 and 172 are determined as described in section 4 for nodal
values Vj; and V5;.
The direction cosines 4y, A, A3 of each vector are determined by dividing values in

12



each vector by its scalar length. The scalar length is the square root of the sum of the
squares of each of the three values in a vector.
The transformation matrix is given by:

[T]=[{A}H{Aa}{4s)] (7.5)

The local derivatives of the local orthogonal displacements may be obtained by the fol-
lowing operation:

du'[ox’ dv'[ox’ Ow'[ox’ dufox 0v[ox dw/dx
du'lay’ dv'[ay’ ow'[dy’ |=[T]"|dufdy dv/dy dw[dy |[T] (7.6)
u'[dz’ dv'[dz' dw'[dz 0u/dz 9v[dz dw/0z

The transformation matrix [7] contains the direction cosines of x’, y’, z’ with reference
to the global axes. [T]” is the transpose of [T].
The infinitesimal volume is given in terms of curvilinear coordinates as:

dx dy dz=|J| d&dndZ (1.7

where | J| = determinant of [/ ].

8 Incremental strains
Rewriting initial strain in the abridged notation of (5.8),

_ 1 (9t 9_“1) l(au,% 1
Eik=1 8xj+6xk +2 6_)98xk 8.1)

The deformed strain (see Fig. 2) is given by:

l(auk 0Au, du; dAuy
8x,-+ ax; +axk+ 0x;

gk + Agjr=1

1 (au, aAU,' au,' aAu,'
+3 é?,-J“—axj ax ax, (8.2)
Subtracting (8.1) from (8.2), we get incremental strain:
Aer ! (aAuk OAw;\ | (0Aw; du;  du; dAw;\ | (0Au; dAY, o
=1\ Tax T ax ) T2\ o axe T ox oxe /T2 \ax o ®.3)

Since strains from the global axes are easily transformed into the local axes, all the fol-
lowing work will be expressed in global axes, particularly because stiffness formula-
tions are also carried out in global axes. If 9u/dx, etc. represent total strains and OAu/dx
etc. the incremental strains, the total strains (6.1) or (8.1) may be expressed in matrix
notation, using Engineering strain, as:

{e}={ec} +{eme} (8.4)
or

13



{e}={e} +3[4]{6}

where [A] is the matrix of the rotal slopes. i.e.

[ou
ax

ou
|3z

and,

ou
ox

ov
ax
ow
0x
ou
dy
oy
=
dy
ow
dy
ou
0z

ov
0z

ow
0z

14

ov
ax

ov
oz

ow
Ax

ow
9z

ou
dy

av
dy

ou
9z

av
0z

ow
oz

(8.5)

(8.6)

8.7



Using engineering strain, incremental strain (8.3) may be expressed in matrix notation
as:

{Ae}={Ae )+ [A]{A0} +3[AA]{A6)} (8.8)

where:

0Au[dx
0Av/dy
dAw[dx
WAL =13 aujay +dAvjax (8.9)
0Av[dz + dAw/dy

0Aw/[0x + dAu[dz

dAufdx
dAv/ox
0Aw/0x
9Au/dy
{A6}=10Av[dy (8.10)
dAw[dy
dAu/dz
0Av/dz
0Aw/dz

and

[0Au dAv dAw
ox ox 0x

0Au O0Av OAw
oy oy ay

0Au OAv OJAw
0z 0z 0z

[A]=\0Au aAv 8Aw 8Au BAv 0Aw 0 . 0 (8.11)

dy ay dy ox  Ox dx

0Au 0Av 0Aw O0Au 0JAv OJAw

0 0 0 BTN T . &
0Au OAv OAw 0 0 0 0Au O0Av O0JAw
| Oz 0z 0z 0x 0x ox |

Equation (8.9) may be expressed in terms of the displacements and rotations at each
node i, (u;, vi, w;, a;, B;) where every subscript / denotes a sub-vector containing the
total number of nodes. Equation (4.1) may first be rewritten as follows:

15



+]V,§

u u;
v i=N; v
w w;

where

Aixi = Aoxi
Alyi - AZyi
;Ivlzi - AZzi

a,-\
Bi

(8.12)

A1xi = the direction cosine of vector 171, with respect to the global xaxis at the /-

th node, etc.

t; = thickness, normal to the mid-surface of the shell and from section 7,
/11xi
Vii=t; { Ay ¢ (8.13)
Alzi
Au;
Av;
{AeL}=[B]{Aw; (8.14)
Aa,-
ApB;i

where the strain displacement relationship [B] is:

[ON,
x

ON;

aN;
| 9z

oN;
ox

oN;
0z

N,

9z

oN;

£

N,
ax

-

+ %}Lly,'

; ZA oN;
i'2' IXIW

{ . ON;
liy ) lly: a

Z/1 oN;
fi§ Ehrys

7, ON]
I 3 lle@
oN;
ox |

e N, |
i§ 12[@
_+%/11yi]vi

7, ON]
I 3 Azi B
L +%Alxi]\,i

7, ON ]
_t'i 230 Gy

Z/1 aN;
_12 2ylay

¢, 0N,
—liy b5

2, o]
—t;‘z‘ 2xi ay

LN,
— lizhyi

¢, AN
—ly 2i gy
-_ti%AZyi]Vi

t Zl oN; ]
—liy A o
| — tizhaxi N;

Ox |

(8.15)

(8.10) may be expressed in terms of displacements and rotations u;, v;, w;, a;, 8; at the

nodes i as follows:
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[A0)=[G] {Aw, (8.16)

where slope displacement relationship [G] is:

AN, Z. ON, 7, ON]
™ 0 0 3 Mxi gy fi5 hxi gy
oN; 14 oN; 4 oN;
0 o 0 il Ay
oN, ¢ oN,; 4 oN;
0 0 ox ti§ Az B 14 D) Aazi B
oN; { . ON; { , 0N,
En 0 0 ti5 Mxi“gy— —liy 12xf§
oN,; { . ON; {, 0N,
[G] =10 dy 0 t; E ﬂ.ly,' "67 — 1 EﬂzyiTy (817)

oN; 0N, { . 0N,

0 0 T L 3 Azi R L 3 Azi 3
aN; 0 0 Z,l oN; 5/1 aN;
Bz fi'z" 1xi g tii 2xi 3
0 aN; 0 Z/1 oN; Z/1 aN;
e lintyig, Tlhytyig,
0 0 oN; ZA aN; ZA aN;
I Bz 2Mer Tl

Therefore, the incremental strains are given by:

Au, AU,'
AV,' AV,'
(Ae)=[H] {Aw|+1[A4][G] {Aw, (8.18)
Aa,» Aa,-
AB; AB;
where
(1] = [B] + [4](G] (8.19)

The matrices [4] and [AA4] cannot be represented conveniently in terms of nodal dis-
placements as shown for matrices [B] and [G]. Each coefficient in these matrices is in-

17



dividually worked out by differentiating (8.12) and using fotal nodal displacements for
[4] and incremental nodal displacements for [AA4].
For instance, coefficient 4, in [4] is given by:

u;
Cou [or|” ‘Vv -
=35 1ax]4, i (8.20)
a;
Bi
where
o) (3N 7 O\, 7 aN,
H =‘_ 0 0t = = highy e (8.21)
x| dx 2 dx 2 dx
Similarly, coefficient' A4, in [AA4] is given by
AU,’
Av;
oAu [of|” '
Ay = a_u: ‘ll Aw; (8.22)
X ox 11
Aai
AB,

9 Numerical determination of non-linear strain

Since the non-linear load deflection path is obtained numerically by means of piecewise
incremental linear steps, the manner of obtaining Green-Lagrange strains or Almansi
strains (in Eulerian coordinates) require to be mentioned.

a. The Initial or Total Lagrange (TL) formulation

The strains are referenced to the original undeformed coordinates and therefore every
increment of strain represents the true Green-Lagrange strains. This method is used in
the current work since it offers advantages because of the initial configuration occupy-
ing a fixed and stationary base.

b. The Updated Lagrange (UL) formulation

A true Almansi strain using Eulerian coordinates requires the coordinates of the un-
known future configuration. The numerical procedure therefore only provides for
strains based upon the last known configuration (i.e. the last incremental values). This
is therefore known as an updated Lagrange formulation, since the approach determines
Green-Lagrangian incremental strains of the new (unknown) configuration, but with
the last known incremental configuration as a base.

So long as the strain is small as in most shell problems, analyses with large deflections

18



(or rotations) exhibit negligible differences between the prediction of TL and UL
formulations [8].

10 Incremental stresses

The stresses associated with Green-Lagrange strains are called Piola-Kirchhoff stresses.
The constitutive equations in the Total Lagrangian formulations (see section 9) relate
Green-Lagrange strains to Piola-Kirchhoff stresses. The updated Lagrangian formula-
tion relates the Almansi strains to Cauchy stresses (see section 5) when the strains are
small. The present discussion being limited to the TL formulation, the stresses are
Piola-Kirchhoff stresses. Each incremental stress component is added to the sum of all
previous incremental stresses.:

The incremental strains in the local axes {A¢’} (see transformation relationship 7.6)
are stored and used to calculate the incremental stresses from the constitutive stress-
strain relationship.

{Adh=[E*(0) A€ (10.1)

where [E*(o)] is the tangential elasto-plastic modular matrix which is a function of the
current stress level in the materially non-linear stages of the analysis. However, with
isotropic materials such as steel in the elastic region (prior to yield) it is given by:

1 vy 0 0 0 0
10 0 0 0
o 0 0 0
(E*(0)] = I=vy (10.2)
(1—=v9 2
1—v

sym. Sk 0

1—v

L 2k |

where F and v are the modulus of elasticity and Poisson’s ratio respectively. “k” is a fac-
tor forimproving the shear displacement approximation which is implied to be constant
through the thickness due to the displacement function. Since the correct shear distri-
bution is parabolic, k= 1.2 gives a more accurate representation of the correct strain
energy, implying that the effective transverse shear modulus is G/1.2, where

E

G:2(1+v)

This is because the strain energy is obtained from the mean squared stress, whereas the

shear load is obtained from the mean stress. The shear stress at a given height above the
neutral axis is

Ae (10.3)

~l =<
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where

V= shear force per unit width at cross section considered

] = second moment of area per unit width about the neutral axis
A= area of cross section above the given height

e = distance of center of area 4 from neutral axis

Now, if

¢t = thickness of plate at cross-section considered
z=distance to the given height where shear stress is required,

t1=2(tf2—e) +z (10.4)
from which:

e=z[2 (10.5)
and

A=2(2—e)=t—z (10.6)
Therefore,

r= t3/vl2 (1—2)2[2 or r:w (10.7)

The shear strain energy per unit face area is given by

36V22%(t—z)* 1-27?
% dz=
t 2Gt

IITZdZ 1

s G 26

(10.8)

S e— ~

The shear strain energy based upon a uniform shear through the thickness is V2/2Gt.
Hence the correction to the shear modulus, giving on effective value of G/1.2.

11 Material non-linearity

In the ultimate strength analysis of shells, the coupled effect of large displacements and
material non-linear behaviour is of fundamental importance. The formulation used in
the present investigation uses the Prandtl-Reuss flow rules and the Von Mises yield
criterion.

The basic approach to the problem, including the more generalized application to
material non-linearity as applied within computer program DIANA, is presented by
Kusters [10], who also describes the detailed Newton-Raphson and modified Newton-
Raphson iteration procedure. The procedure is similar to that presented by Nayak and
Zienkiewicz [14]. Both references give the approach used in monitoring the stress on
the yield surface.
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12 Stiffness formulation

The variational principle of minimum potential energy is used in the formulation,
where the potential energy is stationary with regard to all kinematically admissible
variations in displacements from the state of equilibrium. The potential energy of the
shell (ignoring body forces) is given by:

n=v-Vv (12.1)

where strain energy U is given by:

U= |1 (f ade) dvol (12.2)

vol 0

and work “V” due to applied loads “P” over a surface “S” by

V= P(6—dy) dS (12.3)

N
An increment of the total potential energy is given by:

A= | [ [{o}"(Ae} +}{Ao) {Ac)] dvol

vol

— § (P+AP) Ao dS—{ P(6—6o) dS (12.4)
where the last term may be ignored, since variations with respect to Ad makes the term
Zero.

Introducing the global stress-strain relationship by transforming (10.1) into global
axes, we get:
All= | { | {o}{Ae} dvol+3 | | | {Ae}/[E*(0)]{Ae} dvol

vol vol

— | [((U+ AU)Au+ (V+ AV)Av+ (W+ AW)Aw] dvol (12.5)
where U, V, W are components of applied load P and u, v, ware components of displace-
ments ¢ in the global x, y and z directions respectively.

Now for stable equilibrium, the stationary value of the potential energy is an absolute
minimum, i.e.,

O0(AIT) =0 (12.6)
substituting (8.18) into (12.5) and applying the variation:
U AU
vieIav L—(§ [ [H]) {0} dvol} = [K]{Ad) (12.7)
w AW vol
where:
[K]= | 515 [H]"[E*(0)][H] dvol + | 515 [6]'[0*][G] (12.8)
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and:

[0, 0 0 0, 0 0 o, 0 0]
or 0 0 o, 0 0 o, 0
oo 0 0 o4 0 0 9o
o6 0 0 g, 0 0

[0%]= g 0 0 o, 0 (12.9)
sym. o 0 0 9o,
g, 0 0
g, 0
L g; |

(12.7) can be written as:
{Pe} +{AP} — (P} = [K]{Ao) (12.10)

where {P,} — {P;} gives the out of balance load vector between the externally applied
load and the internal stresses calculated from the displacements. When this term
vanishes after a number of iterations exact equilibrium has been achieved for the
current load increment {AP,}.

13 Integration of the stiffness matrix

a. Gauss Quadrature
Once the stiffness matrix for each element has been formed in turn, it can be integrated
segmentally, element by element. A number of Gauss (or sampling) points are chosen,
whose positions are allocated to achieve best accuracy. These Gauss points are there-
fore positions where the function is defined with the best accuracy. If the number of
Gauss points in any direction is “n”, its function as well as its position are unknown,
giving 2nunknown. Therefore, a polynomial up to a degree 2n — 1 could be exactly inte-
grated.

The Gauss rules are expressed below for a single integration up to surds of n=3
which are the ones most commonly used.

1

F:_glf(z) dé=2f(f=0) when n=1
=f(é= —1Y3)+f(E=1//3) when n=2
=%f(5=—‘/0.6)+§f(5=0)+§f(£‘=‘/0.6) when n=3

With area or volume integrals, the inner integral is evaluated first, keeping all other
variables constant and the outer integrals evaluated successively in a similar manner.

The stiffness matrix of each Gauss point is evaluated and all contributions summed
to form the overall element matrix. Strains and stresses are evaluated at each of the 4
Gauss points (n = 2) or 9 Gauss points (n = 3) for each element in the £— nsurface of the
plate (see Fig. 3 for positions on the present element). The choice of the surface integra-
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Fig.3. Fourand nine Gauss point integration station position in £ — 7 surface of parent element.

tion (4 or 9 Gauss points) is left to the user. The variation of the strain quantities in the ¢
direction are linear, and therefore only two Gauss points are required in that direction
for a linear stress-strain relationship, giving a total of 8 or 18 Gauss points in the ele-
ment, as the case may be.

When material non-linearity (plasticity, etc.) affects the element, more integration
points are required in the depth of the plate (£direction). In such an instance, Simpson’s
rule has been used for integration through the depth, for which the accuracy is
acceptable. It is also convenient in use because of equally spaced intervals (or sampling
points). Fig. 3 shows two Gauss stations in the thickness direction, as normally used for
linear material behaviour.

Further details of the integration procedure used are given by Kusters [10] and Tol-
man [13].

b. Reduced integration and accuracy
It has been found [11, 12] that since the element used has been degenerated from a finite
sized three dimensional isoparametric element, the formulation contains some spuri-
ous transverse shear energy terms not present in conventional plate or shell bending
theory and produces an over stiff element (or locking). This inaccuracy increases as the
shell element becomes thinner. In the case of the chosen element, it has been found
[11, 12] that by using the 2 x 2 Gaussian quadrature rule in the &xn axes the shear strain
is correct at these points for linearly varying moments as well as constant moments in
the element, suppressing the spurious transverse shear effects.

All the numerical examples presented in this paper are therefore carried out with
2 x 2 Gaussian quadrature (4 Gauss points) in the &n axes for all integration of the
energy terms.
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14 Bench mark tests

A number of tests [15] have been carried out to check the analytical tool for the linear
and non-linear behaviour. However, in this paper only a few of the more interesting
non-linear cases are presented.

14.1 A cylindrical shell segment

The fully clamped cylindrical shell segment loaded incrementally by a uniformly distri-
buted gravity load “g” (see Fig. 4 for details) has been used as a standard case for testing
geometrical non-linearity by many authors, because no material non-linearity is
present. Crisfield [16] presents a range of incremental values of uniformly distributed
load versus central deflection ratios from other finite element formulations. Therefore,
this range, together with Crisfield’s results, are compared with those obtained from
computer program DIANA (see Fig. 5). The number of Newton-Raphson iterations
required for convergence are shown for each incremental step.

The results in the stable region are close to the lower end of the range, but in the
region of the higher non-linearity, the three dimensional effect gives higher values of
the plot.

finite element

E = 3105 N/mm?

v =03
t =3175 mm
-.n... R = 2540 mm
L = 508 mm
t B = 508 mm

Fig. 4. Fully clamped cylindrical shell under uniformly distributed load.
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Fig. 5. Results of the linear and geometrical non-linear analysis for the fully campled cylindrical
shell.

14.2 Combined material and geometrical non-linearity of tubular steel T-joints -
comparison with experiments

Akiyama et al. [17] provided data on the load-deflection plots measured up to and
beyond collapse of such T-joints loaded in tension and compression. Only the case in
compression is described here, since the experimental results for the case in tension
had a wide scatter, possibly because of the influence of the weld at the intersection.

Fig. 6 shows the details of the experimental arrangement for the T-joint, where “6”
are positions where deflections were measured. The material properties of the chord

and brace are:

Yield stress in the chord in the longitudinal direction (g,,) = 392 N/mm?
Yield stress in the chord in the transverse direction (g, x 0.85) = 333 N/mm?
Yield stress in the brace in the longitudinal direction (g,,) = 441 N/mm?
Modulus of elasticity (E) = 210000 N/mm? (assumed)

Poisson’s ratio (v) = 0.3 (assumed)
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Fig. 6. Details of the T-joint loaded in compression (6 = position where deflection is measured).

Fig. 7 shows the finite element idealization used for the analysis, where the mesh is refi-
ned at the intersection because of the stress concentration. The mesh at the intersection
in Fig. 7 shows 20 element in the circumference. Assuming symmetry, only a quater of
the structure in Fig. 7 has been analysed, allowing 5 elements to be considered along the
intersection line. A linear analysis with a coarse mesh idealizationof 3 elements along
the intersection line, when compared with a linear analysis of the present 5 element

Fig. 7. Computer model of complete T-joint represented by 8 node finite elements.
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mesh along the intersection line gave acceptable convergence in the values. However, it
was decided to work with the finer mesh so that material and geometric non-linearity
could be better represented.

The increments of load were applied by uniformly prescribed displacements at the
top of the brace (Figs. 6 and 7). Each end of the chord is assumed to be attached to an
infinitely rigid flange plate which is allowed to rotate and move laterally, but not
vertically.

Fig. 8 gives the results of the load-displacement plot for the experimental work by
Akiyama et al. [17]. The numerical results for the linear-elastic, geometrically non-
linear (only) and the combined geometrical and material non-linear cases are also plot-
ted for reference. The combined geometrical and material non-linear results are, how-
ever, representative of the real case, and compares well with the experimental values
(only 1% higher than the experimental collapse load). The drop off in the computed load
displacement plot after maximum load is steeper than the experimental plot. This is be-
cause an ideally elastic, perfectly plastic stress-strain relationship was assumed. The
only information available was yield stress measured by coupon tests, and the strain
hardening properties of the cold worked tubular members were not provided.

The load deflection plots for the isolated geometrical or material non-linear cases
were not taken much beyond the experimental collapse load, as they are not relevant.

P (ton) | o) ‘
15 da da
F linear-
L elostic7 ,f'
R/ J -
Q.Qﬁ"' © o
o |
I- CB- 100-04
5
L 5=Qé_dz_
T 20 .......1.30.........40...6.(.6‘_;1)
--------- Akiyama [17]

O] DIANA (linear -elastic)

v DIANA (geometric non-linearity only)

A DIANA (material non- linearity only)

® DIANA (combined geometric and material non-linearity)

Fig. 8. Load-deflection relationship of the T-joint with brace in compression.
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Only 3 integration points using Simpson’s rule were taken across the depth of the
plate. This is not always considered sufficient to describe the material non-linear behav-
iour. However, because plasticity was confined to a small area close to the intersec-
tion and occurred late in the loading process, it is not thought to have greatly influenced
the load-deflection relationship or the collapse behaviour. Fig. 9 shows the spread of
plasticity (Von Mises yield criterion) in the chord just after collapse. The semi circular
part that was analysed is shown with the elements developed out into a flat rectangular
surface for convenience in presentation.

15 Conclusions

The analytical procedure described in the preceding pages is built into the general pur-
pose finite element computer program “DIANA” (DIsplacement AN Alysis) written by
IBBC-TNO.

Comparisons of the analytical procedure with other numerical solutions in the linear
elastic and non-linear range have shown good correlation, of which only one standard
example is presented. Comparison of experimental observations of the load displace-
ment relationship of a tubular T-joint up to and beyond collapse with the analytical be-
haviour have also given good agreement. The analytical collapse load is 1% higher than
the experimental value.

Although the present procedure is capable of handling very large displacements and

INTERSECTIONLINE

inside face

outside face [g:!

EZdtotal thickness

Fig. 9. Von Mises yield on the developed surfaces of the T-joint chord, with brace in compres-
sion.
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rotations, most Civil Engineering applications, particularly with reference to shell
structures, are not concerned with magnitudes where the structure is no longer service-
able. Therefore, although the analytical procedure is capable of handling such cases,
examples of this nature have not been investigated here.
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