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Abstract

The stability of timber portal frames and arch frames with respect to twist-bend buck-
ling (lateral torsional buckling) was studied with the aid of a finite element program.
Frames of rectangular cross-section, resiliently supported by bracings elsewhere in the
structure, were investigated.



The stability of timber portal frames
and arch frames

An investigation into the twist-bend buckling stability
of structural frames, of constant rectangular cross-section,
resiliently supported by bracings

1 Introduction

One of the trends in present-day construction practice is towards the increasingly slen-
der and accurate design of loadbearing structures. This trend is apparent in timbre con-
struction practice too. Partly because of modern fabrication and glueing techniques it
has become possible, at acceptable cost, to go a long way towards minimizing the
material comsumption in timber structures. Laminated portal frames and arch frames
are an important example of this. Although these frames are extensively used, there are
still may unanswered questions concerning their lateral stability, particularly with
regard to twist-bend buckling. This subject will be examined in the present article
basing itself on research which formed part of the author’s graduation work at the Eind-
hoven University of Technology.

2 Statement of the problem

Consider an ideally plane portal frame or arch frame whose moment of inertia in the
lateral direction is very much smaller than in the plane of bending. If such a frame is
loaded imrits plane in torsion-free bending combined with shear and/or axial force, a
plane state of equilibrium will primarily be established. If the frame is subjected to a
small lateral translation U and a small rotation ¢ about its longitudinal axis, while the
load is still small, and if the cause of this imposed translation and rotation is then
removed, the frame will return to its original state. Thus, one stable state of equilibrium
is associated with this loading. If the load is further increased, however, a laterally
deflected and twisted (torsionally distorted) state of equilibrium becomes possible
when the load reaches a certain value. If the frame is then subjected to a lateral displace-
ment and a rotation, this new state of equilibrium will remain even after the cause of
this deformation of the frame is removed. Therefore, more than one state of equilibrium
is possible. The critical load on a structure is defined as the load at which more than one
state of equilibrium can exist. With further increase of the lateral displacement U and
the angular rotation ¢ the load P will steadily increase, decrease or remain constant.

The possible relations between P, U and ¢ for an ideally plane structure are indicated
by the dotted lines in Fig. 1. In actual practice, however, a structure will never be ideally
plane or have ideally straight members, but will always have a certain initial deforma-
tion. Therefore the relation between P, U and ¢ in reality will be represented by curves
such as those drawn as solid lines in Fig. 1.
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Fig. 1. Possible relation between P, U and ¢.

Although the twist-bend buckling (or lateral torsional buckling) of straight and
curved beams has been dealt with in numerous publications, the stability of laterally
supported portal frames and arch frames with regard to this type of buckling has as yet
scarcely been investigated.

As such frames are, with few exceptions, components of a larger structure, laterally
unsupported frames seldom occur in practice. In the great majority of cases the lateral
displacement of the frames which occurs when overall instability of the structure
develops is counteracted by stability-promoting arrangements elsewhere in the struc-
ture. These arrangements usually consist of wind bracings (see Fig. 2).

A substantial saving in construction material can be effected by taking the lateral
support from the bracings into account, and for this reason the behaviour of laterally
supported frames certainly merits investigation.

The research reported here was confined to investigating the “theoretical” twist-bend
buckling behaviour of portal frames and arch frames which are laterally supported by
bracings or other such stabilizing arrangements. The effect of dimensional deviations,
etc. will not be considered in connection with this theoretical behaviour.

Wind bracing

Fig. 2. Building with three-hinged frames and wind bracing.

3 Portal frames
3.1 Frames investigated

The investigation was confined to the component units (halves) of three-hinged portal
frames. For practical reasons the number of variables comprised in the investigation has
been limited, and in connection with this approach the following assumptions have
been made:



- The restraining influence that one half frame can exert on the other during twist-
bend instability is neglected (in other words, the safe assumption is made that the
two half frames will buckle simultaneously in the same direction).

- The displacement of the wind bracing at the knee of the frame is neglected.

- Any torsional restraint exerted by the roof structure on the frame is neglected.

- The frame is of constant rectangular cross-section.

- With regard to the three-hinged portal frame as a whole the effects due to the change
in slope of the wind bracing at the top hinge are left out of account.

Since the influence of the one half frame on the other during twist-bend instability
(buckling) is neglected, the analysis can be confined to one half.

The gable-type portal frame that was adopted as the starting point for this research is
of constant rectagular cross-sectional shape and is supported along the upper edge of
the roof beam by a wind bracing attached to it by hinged connections (see Fig. 3). With
regard to the forces acting within the plane of the portal frame, the halfframe under con-
sideration is provided at A with a hinge and at B with a roller bearing that allows
“rolling” movement along the chord A-B. With regard to out-of-plane forces the struc-
ture is provided at A with a fork bearing (U= ¢ = 0), while at B the section can rotate
freely. Displacement of the roof beam out of the plane of the frame is restrained by the
wind bracing. This bracing, which can be regarded as a supporting girder loaded in
bending, is provided with a roller bearing at the knee of the frame (point C), so that
displacement perpendicular to the plane of the frame is prevented at that point. At D
the supporting girder is provided with a bearing which develops flexural restraint but
allows displacement perpendicularly to the plane of the frame. The purlins which
connect the frame to the bracing are hinged both to the frame and to the bracing. The
column of the portal frame is not laterally supported.

Plan

Fig. 3. Schematic representation of the frame investigated.



3.2 Loading

In this investigation it is assumed that the specified loading which causes the largest
negative bending moment at the knee of the frame is the most dangerous bending
moment with regard to twist-bend instability. In order to find out what load combina-
tion causes this largest negative moment, the specified loading of three-hinged portal
frames was subjected to a closer analysis. This showed that, depending on the slope and
span of the roof, in one case the combinatiom of live load + dead load and in the other
case the combination of wind load + dead load is the governing condition.

The bending moment diagram which occurs in the relevant half frame under wind
load + dead load remains negative in all parts thereof, whereas with the other load com-
bination there is a positive area in the diagram near the upper end of the roof beam (see
Fig. 4). Since a negative moment produces compression at the unsupported edge of the
beam, it is more dangerous with regard to twist-bend instability than a positive
moment. For this reason the present investigation has been based on the bending
moment diagram for the load conbination of wind load + dead load. This condition will,
in those cases where the combination with live load causes the largest negative moment
at the knee of the frame, constitute a lower bound for the critical loading.

The bending moment diagram due to the combination of wind load + dead load
closely resembles the bending moment diagram due to the application of a compressive
force acting along the chord A-B of the half frame (see Fig. 4). As this last-mentioned
loading case is much simpler to describe, the load adopted as the basis for this twist-
bend buckling analysis is a compressive force whose line of action corresponds to the
chord.

Bending moment diagram as a

result of dead load and live load.

Bending moment diagram as a
result of dead load and wind load.

Bending moment diagram as a
result of chord loading.

Fig. 4. Bending moment diagrams for different types of loading.



3.3 Differential equations

For the type of frame under consideration it is possible to derive, both for the roof beam
and for the column, the differential equations which describe the twist-bend buckling
behaviour. These derivations can be based on equilibrium or on energy considerations.
The latter approach was chosen because, with the method which uses the calculus of
variations and the principle of minimum potential energy, it is possible in one and the
same operation to derive the differential equations and the boundary conditions to be
satisfied.
The following assumptions have been made:
- The structure consists of a homogeneous isotropical material, and the laws of Hooke
and Bernoulli are valid.
- The deformations within the plane of the structure are negligibly small.
- The cross-sectional shape does not change during twist-bend buckling.
- The loading does not change its direction of action.
- The effect of shear deformation and deformation due to axial force is neglected.

For the roof beam and the column this approach yields the following two sets of coupled
differential equations (see Appendix A):
a. roof beam:

ELu" + EL,(u"" +3hep"") + (My-9)"+ Pcos v-u"=0 (1)

ECyp"" + EL,(u"" + 3hp"")sh— GL - 9" + P cos v :If " +Mu"=0 (2)
b. column:

ELu" + (My-9)' +Psiny-u"=0 3)

ECW¢””—GIt-(p”+Psiny§;¢"+Mx-u”=0 4

At the knee of the frame these two sets of differential equations are coupled to each
other by means of compatibility and equilibrium conditions.

3.4  Numerical solution

Because it did not prove possible to find analytical solutions that satisfied the boundary
conditions it was decided to make use of computer facilities in dealing with the differen-
tial equations derived.

With this type of problems the computer can be used in two fundamentally different
ways: the differential equations can be solved numerically or, alternatively, a finite
element program capable of solving geometrically non-linear problems can be applied.

For the present purpose the latter alternative was chosen, for the following reasons:
- The basis for the former alternative (i.e., numerical solution) is provided by the dif-

ferential equations in which, for simplification, certain influences have been neglect-



ed which are automatically included in a finite element program, such as deforma-
tion due to shear and axial force, stress concentrations at the inner edge of the knee,
and possible deformation of the cross-section during twist-bend buckling.

- The availability, at the Eindhoven University of Technology, of a finite element pro-
gram with which geometrically non-linear problems can be analysed.

3.5 Computer program employed

The computer calculations were performed with the aid of the finite element program of
Marc Analysis Research Corporation. With this program, called Marc, the magnitude of
the load at which loss of stability takes place can be calculated for a structure consisting
of an anisotropic material subjected to any loading. The output for this problem consists
of a factor by which the actual load must be multiplied in order to attain the critical state
and of the eigenvector associated with this.

Before a start was made with the stability calculations for the portal frame, various
test calculations were carried out in order to find out to what extent the critical loads cal-
culated with the Marc program are reliable. After some imperfections had been elimin-
ated it was found that the critical loads obtained with Marc are in very good agreement
with values calculated with the aid of analytical methods (see Table 1).

3.6 Choice of element configuration and element type used

The element configuration used for all the portal frames, together with the boundary
conditions and the loading, is indicated in Fig. 5. For the wind bracing the boundary
conditions and element configuration are indicated in Fig. 6.

Tabel 1. Test results of the Marc computer program
Test results. Dimension in mm.
length | height | width. | material | analytical Marc deviation
3::14—" 2000 | 200 10 timber [Pk= 1131N [Pk= 109N 35%
g:k—” 2000 | 200 10 steel Pk= 2159N |Pk= 2182N 10 %
P
Pk= 148 N |Pk= 150 N 13 %
4000 200 20 timber
4 Pk= 166 N |Pk= 1705N 27 %
P Pk= 8535N |Pk= 824N | 21%
i jjjj 4000 | 200 | 20 teel
stee Pk= 8886N |Pk= 9079N | 3.3%
M M
200 Mk= 804 N = 29
CKP 4000 20 | timber 804 Nm| Mic= 786 Nm | 2.2%
.y 500 Mk=-804 Nm |Mk=-788 Nm| 2.0 %
M
C M 200 Mk= 4LGSKNm|Mk= 45 kNm| 08 %
Q) 4000 20 | steel
A’ 500 Mk = - 44 65kNm[ Mk=- 45 kNm| 0.8 %
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Fig. 5. Element configuration adopted for the frame.
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Fig. 6. Element configuration adopted for the wind bracing.

The type of element adopted is a “bilinear thick shell element” with four corner nodes
and six degrees of freedom per node. As the machine time for stability calculations with
Marc very greatly increases when the number of degrees of freedom per element
becomes larger, this type of element with a relatively small number of degrees of free-
dom is very suitable for calculations of this kind. A disadvantage is that with this
approach the compatibility requirements can be satisfied only at a limited number of
points of the element. This being so, the element does indeed correctly describe the
behaviour of the structure on average, but a stress analysis may reveal that at some in-
tegration points the stress may well deviate somewhat from the expected value.

3.7 Material properties introduced

Although the differential equations comprise, in accordance with the beam theory, only
one modulus of elasticity and one shear modulus, more material data are needed for the
computer calculations. The computer establishes for the chosen type of element a stiff-
ness matrix which, for the type chosen for the present purpose, is as follows:



Exx 1-[Exx  —Vyx|Ey —Vux|Ex O 0 0 1 oxx ]
Eyy — Vxy[Exx 1-/Eyy —vylE, O 0 0 Oyy
€2z _ - sz/Exx - vyz/Eyy 1 * /Ezz 0 0 0 Ozz
| | O 0 0 1-/Gy O 0 Oxy
- 0 0 0 0 1-/Gy, 0 Oy
Lyxd L O 0 0 0 0 1[Gy 1L 0 |

Since the analysis is based on a symmetric stiffness matrix, the following values must be
input into the computer:

Exx, Eyya Ezza Vxy, Vyz, Vax, ny, Gyz and sz

With laminated timber, as considered here, there is no question of a definite wood grain
(fibre) direction for the structure as a whole. Apart from the axial direction, the orienta-
tion of the fibres may differ greatly from one ply to another (see Fig. 7).

== ; -

v v2

Fig. 7. Possible fibre orientation in the plies.

This means that in timber frames of laminated construction there occurs an averaging
of the various stiffness properties in the plane perpendicular to the fibre direction.

For the purpose of the present stability analysis the actual stiffness properties of lami-
nated wood were not investigated in detail. As the basic material of the frames conside-
red in this research was in most cases softwood (deal), the following values were input
into the computer:

Ey = 11000 N/mm?
E,, = E,,= 600 N/mm®

vyy = 0,48
vy, = 0,45
v = 0,036

G,y = 500 N/mm?
G,, =200 N/mm?
G = 500 N/mm?

In making this choice of values the wood was assumed to have a moisture content of
approximately 12%, and a local co-ordinate system for the orientation of the fibres as
shown in Fig. 8 was adopted.
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Fig. 8. Orientation of wood fibres.

3.8  Set-up of computer calculation; results

In order to let the results of the calculation cover the widest possible range the differen-
tial equations (1) to (4) have been rearranged as nondimensional expressions (see
Appendix B). With the approximation that 7, for narrow rectangular sections can be
taken as equal to bh3/12 and using the abbreviations indicated below, the differential
equations for the roof beam can be written as:

PL* Gl h EC
O=z/L; &=ulL; x=ELJEL; k=—; —=0,182; —=§; ——=582 (5
ALs E=ull; x=ELJEL ElL,’ EI, L ce O
(14 #)E 4 3xSp ™™ + k cos vE* —ksinv-0- 9 —2ksinv-p*=0 6)
(G4 %) 387 0™ £ 1S E* —0,1820 ™ + k cos v5Sp™* — ksin vOE X =0 @)

(x denote derivatives with respect to )

With the aid of these abbreviations the differential equations for the column can like-
wise be rewritten in nondimensional form, except that now an extra factor, namely 3, is
introduced because of the difference in length between the column and the roof beam:

EXX 4 k. p2sin pE — k-2 cos y8p™* —2k- B cos y-p* =0 ®)
! -8%- 9% —0,1820™ + kB sin y- : -8 9™ — kB? cos yOE = 0 ©)
1282 ’ 128°

The k-value (PL*/EL) of the frame is what we are really interested in. With the aid of
equations (5) to (9) it becomes apparent that this k-value is governed mainly by the
following quantities:

- x: the ratio EL,[EI

- §: the ratio h/L

- [f: the ratio of column length to beam length

- a: the slope of the roof

With the aid of the above considerations it was determined how the computer calcula-
tions could best be set up. Frames with a column/beam length ratio § of 1:2 and 1:3
were investigated, for roof slope angles a of 10°, 20° and 30°, for values of S(= A/L) of
1:14,1:11 and 1:8, and for values of y (= EI,/EL) 0of 50, 100 and oo. It should be noted

11



that for y = 50 and y = 100 only the extreme values of S were considered, namely, 1:14
and 1:8.

As the finite element method uses absolute values, not ratios or relative values, the
above-mentioned parameters were applied with L= 8000 mm and L= 12000 mm and
with b= 100 mm.

At the start of this research it was suspected that the stiffness of wind bracings as
employed in practice is so great that portal frames behave rather in the manner of struc-
tures with infinitely rigid lateral restraint of the upper edge. If proved correct, this sup-
position would mean that the effect of the bracing could, for the purpose of the further
investigation of the problem, be confined to assuming a fully restrained upper edge,
which would constitute a major simplification. Accordingly, this aspect was first investi-
gated. In[12] the stiffness of wind bracings is considered with reference to a pratical test.
If the results obtained in that research are “translated” into values applicable to three-
hinged portal frames, it appears that in practice the ratio EI,/EI, for these structures is
approximately in the range from 100 to 400. For this reason it was decided, besides ana-
lysing frames with infinitely rigid lateral support for the upper edge, to analyse frames
with EI,[EIL, equal to 50 and to 100.

Before the results of the calculations are presented, the convergence criterion applied
by Marc will first be explained. This will enable the differences between the various
critical loads to be better assessed.

The eigenvalues of the stiffness matrix that has been established are calculated by
Marc with the aid of an iteration process in which, per operation, two eigenvalues are
calculated, both of which converge, in different ways, to the exact value.

If curves were drawn through points representing these calculated values in a dia-
gram, two different curves would be obtained, both converging, in their respective dif-
ferent ways, to the same value. The iteration process is stopped when the difference
between the two values is smaller than a certain predetermined value, the so-called
convergence criterion.

A drawback is that this criterion leads to an accurate approximation of the exact value
only if the two curves converge in manifestly different ways. If they converge as shown
in Fig. 9A, they enclose that exact value between them, in which case the criterion
yields accurate results. But if the curves converge in the manner shown in Fig. 9B, the
criterion may yield results which deviate more from the exact value then might be
supposed.

2

difference between
curve 1and 2 = X

difference between
curve 1and 2 = X

exact value —

exact value

A B

Fig. 9. Different types of convergence in the iteration process.
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Unfortunately, in the iteration method used by Marc both of these alternative “con-
vergence processes”, as represented in the respective diagrams, may occur. In the
present research this has been allowed for by adopting a smaller value for the con-
vergence criterion (namely, 0,1%) in a case corresponding to Fig. 9B than in a case cor-
responding to Fig. 9A (for which a value of 1% is adopted). This considerably improves
the situation, but deviations of + 1% between the critical loads - due to the above-
mentioned phenomena - nevertheless remain.

The critical loads calculated with the aid of the computer are given in Table 2. As
appears from Table 2, there is very little difference in the critical load for frames with
x =100 and y = o respectively. The maximum deviation that occurs is only 4%. The
eigenvectors for these frames also differ very little. The eigenvector for a frame with
x =100 is shown in Fig. 10, from which it is apparent that the displacements of the
bracing are negligible in relation to the lateral displacements of the frame.

The deviations revealed by the calculations should be viewed in the context of the
accuracy of other assumptions made in analysing this kind of frames. For the type of
portal frame and loading under investigation it then appears permissible to draw the
following conclusion:

“Half frame units which form part of a three-hinged gable-type roof frame and are

Table 2. Results of calculations

Py in kKN .
P, in kN

a B S for y = for y =50 deviation for y =100 deviation
10° 1/2 1/14 96,5 93,7 2,9% 95,1 1,5%
10° 172 1/11 1153
10° 1/2 1/8 135,95 132,4 2,6% 134,15 1,3%
20° 172 1/14 95,1 92,7 2,5% 94 1,2%
20° 172 1/11 113,3
20° 1/2 1/8 134 130,65 2,5% 1325 1,1%
30° 172 1/14 95,7 93,4 2,4% 94,5 1,3%
30° 172 1/11 113,4
30° 172 1/8 133,5 131,25 1,7% 132,75 0,6%
10° 1/3 1/14 112,2 103 8,1% 107,7 4%
10° 1/3 1/11 119,7
10° 1/3 1/8 129,4 125,5 3% 127,75 1,3%
20° 1/3 1/14 110 102,2 7,1% 106 3,6%
20° 1/3 1/11 118,05
20° 1/3 1/8 130,2 125 4% 127 2,5%
30° 1/3 1/14 108,5 103,25 4,8% 106,5 1,8%
30° 1/3 1/11 118,15
30° 1/3 1/8 127,9 124 3% 126,1 1,4%

a = slope of roof beam

f = length of column/length of roof beam

S = depth of cross-section/length of roof beam

x = flexural stiffness of bracing/lateral stiffness of frame (= EL/EL)

13



supported along the upper edge of the roof beam by a wind bracing of such stiffness that
El,| EI, > 100 will show the same theoretical twist-bend buckling behaviour as such units
in which the upper edge has infinitely rigid support against lateral displacement”.

For practical purposes this means that for the normal three-hinged portal frame struc-
tures the two halves thereof can, in so far as their theoretical twist-bend stability is con-
cerned, be conceived as infinitely rigidly supported along the upper edge.

In view of the above conclusion, the further investigation was confined to studying
the twist-bend buckling behaviour of frames with infinitely rigid lateral support for the
upper edge.

AN
AN
A
A\
A
N\
A\

AN
AW

Fig. 10. Eigenvector.

3.9 Twist-bend buckling behaviour of portal frames with infinitely rigidly
supported upper edge

With the aid of the values given in Table 2, the values of k for the frames analysed with

x = oo are listed in Table 3.
The negative bending moment which occurs at the knee of the frame is equal to:

M. = Px- BL cos y (10)
Multiplying both sides of the equation P = k-EIy/L2 by BL cos y, we can write:

EL-B
yL (11)

M= pu

14



u=kcosy (12)

The values of u are also given in Table 3.

Besides kand g, this table contains the maximum compressive stresses occurring in
the roof beam at the knee of the frame. From these figures it appears that for a large
proportion of the frames under investigation the flexural stress at which instability
develops is below the failure stress of wood. For deal the failure stress is approximately
30 N/mm?.

By plotting the calculated values of kand u ina graph it is fairly easy to estimate the k
or u of a structure with parameter values which are intermediate between those investi-
gated.

For the values of u these graphs are presented in Fig. 11.

As already stated, the computer program supplies, besides the critical loads of the struc-
tures, also the associated eigenvectors. The way in which the vectors are represented in
this report calls for some clarification.

An overall x-y-z co-ordinate system has been adopted, in which the x-y plane coin-
cides with the plane of the portal frame. As the nodal displacements in the x-y plane are
negligible in relation to the displacements in the z-direction, only the latter have been
plotted in the diagrams. The displacements in the z-direction have been plotted in the
x-y plane and more particularly in relation to the outer edge of the unloaded frame. The
lines 1, 2 and 3 represent the displacements in the z-direction of the inner edge, the
centre-line and the outer edge respectively. The distance between line 1 and the outer
edge of the unloaded frame is therefore a measure of the displacement of the inner edge

I »a=10° I -a=10°
II - a=20° II »a=20°
19 Il - a = 30° 19 Il - a =30°

-
3
®

-
]

-

S

AL 16 (5:1/2 M 16 N 1 Le}= 1/3 |
15 15 .
1 13
12 2 I
11 n
1: S ——— 1;)
8 i e S N e 8
) —T] — )
6 —— 6
5 5
4 4
3 3
2 2
1 1
Y Y Yz Y T Y R w Y iz Yy Vi Vg Vg

Fig. 11. Values of u.
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in the zdirection. By way of illustration, two characteristic eigenvectors are shown in
Figs. 12 and 13. For the other eigenvectors see Appendix 3.

Table 3. Results of calculations for frames with infinitely rigid lateral support along the upper

edge
P in kKN M,, in kN Oy, in
a B S for y = o k for y = o u N/mm?
10° 172 1/14 96,5 11,78 318,55 9,72 60,0
10° 172 1/11 115,3 11,06 380,6 9,13 445
10° 1/2 1/8 135,95 9,49 448,77 7,83 28,2
20° 1/2 1/14 95,1 11,6 283,3 8,64 53,5
20° 1/2 1/11 113,3 10,87 337,52 8,10 39,7
20° 1/2 1/8 134 9,35 399,19 6,96 25,2
30° 172 1/14 95,7 11,68 250,64 7,65 47,5
30° 172 1/11 113,4 10,87 297,0 7,12 35,1
30° 172 1/8 133,5 9,32 349,64 6,10 22,2
10° 1/3 1/14 112,2 20,54 399,1 18,26 33,8
10° 1/3 1/11 119,7 17,25 425,77 15,34 22,6
10° 1/3 1/8 1294 13,55 460,27 12,05 13,1
20° 1/3 1/14 110 20,14 357,28 16,36 30,4
20° 1/3 1/11 118,05 17,01 383,43 13,81 20,4
20° 1/3 1/8 130,2 13,63 422,89 11,07 12,1
30° 1/3 1/14 108,5 19,86 312,7 14,31 26,7
30° 1/3 1/11 118,15 17,02 340,51 12,26 18,2
30° 1/3 1/8 127,9 13,39 368,61 9,65 10,7

a = slope of roof beam

B = length of column/length of roof beam

S = depth of cross-section/length of roof beam
x = EL[EI

k=P, -L|EI

u=My-L[EL,- B

Fig. 12. Eigenvector.
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displacements perpendicular to

the plan of the frame.

Fig. 13. Eigenvector.

3.10 Interpretation of the eigenvectors

It appears that, besides some transitional forms, two fundamentaly different types of
eigenvector are to be distinguished. Representatives of both types are shown in Figs. 12
and 13. In the case of Fig. 12 the column undergoes very large displacements indeed so
large that the maximum nodal displacement of the vector occurs at the column. On the
other hand, in the case of Fig. 13 the column undergoes hardly any displacement, while
mainly the roof beam undergoes displacement in the z-direction. These different forms
suggest that loss of stability in some frames is caused by the development of instability
of the column and in others by the development of instability of the roof beam, In order
to gain more insight into these matters, it was investigated, with the aid of some calcula-
tions, which part of the frame is mainly responsible for loss of stability. For this purpose
the half frame under consideration was divided into two parts, namely the column and
the beam. By introducing some additional boundary conditions we thus obtain two
structural members for which it is possible to establish a formula with which the critical
load can be calculated (see Fig. 14).
The critical load of the schematized column is approximated by the formula:

N M

N—kr+M—kr<1 (13)
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Fig. 14. Schematized column and roof beam.
where:
. ; b4 2EIy T
N=Psin 7, M= P cos YL,B, Nkr=m en Mkr= 1,75ﬁ—L\/EIyGt (14)

Formula (13) can now be written as follows:

sin Lcos y\ ™!
v, B 7)

Pkr<( N M, (15)

The critical loads calculated with the aid of this formula are given in Table 4.
Because it is difficult to find for a roof beam a formula which provides a reasonably
good approximation of the critical load, a different approach was adopted for this
member.
Since the beam can be conceived as infinitely rigidly supported along its upper edge,
the differential equations (1) and (2) can be transformed with the aid of

Ubracing = %h xXo (16)
into the following differential equation (see Appendix 4):
(EL -3h* + EC,\)0"" + (— GL+3h’N+ hM)p" =0 17

This differential equation is not directly soluble for the roof beam of the portal frame
with its specific boundary conditions. The beam has therefore been conceived as a
variant of the basic case as represented in Fig. 15.
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Fig. 15. Schematized roof beam.

The following expression can be derived for the critical load of this structure (see
Appendix D):

( 2+12G)

il

EI, ES?

= = 18

N (18)
h

where S= h[L

The roof beam of the portal frame differs from this basic case in three respects:

- The roof beam is loaded by a linearly varying moment.

- At the roller bearing at the top of the frame the angular rotation is not restrained.
- At the knee of the frame the roof beam is partly restrained, i.e., there is partial fixity.

Because of these differences the critical load of the roof beam will differ from the basic
case. For the roof beam the critical load can, for example, be written as follows (see
Appendix D):

12G

2 —
El, @ +E¢)
Pcosv=—-———"= %0 (19)

ﬁ.b+3ﬂnﬂ
S

(¢ is a correction factor which need not necessarily be constant)

From research on the twist-bend buckling behaviour of straight beams it is known that
the critical load of a beam subjected to a bending moment configuration differing from
the basic case can nevertheless be calculated with the formula for the basic case, provid-
ed that the critical value is multiplied by a factor f. This factor will depend on the shape
of the bending moment diagram [18].

In [18] it is also shown that different boundary conditions can quite suitably be taken
into account by replacing the actual length of the structure by an effective length.

Since the bending moment configuration for all the frames investigated differs in the
same way from the basic case, it can be assumed that f is the same for all these frames.
The absence of the fork at the roller bearing likewise occurs in all the frames, and there-
fore the effective length will, for all the roof beams, increase by very nearly equal
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amounts in consequence of this. The effect of the partial fixity differs from one frame to
another, but these differences are bound to be minimal for frames with the same roof
slope and same f.

In view of the above considerations the factor J will vary only slightly for roof beams
with the same slope and same (. For those frames in which loss of stability is caused
mainly by the development of instability in the roof beam the factor ¢ will therefore
have to be substantially equal for frames having the same a and 8. The values of é have
been calculated for all the frames under investigation and are listed in table 4.

It appears from Table 4 that in all the frames with 8 =1 the loss of stability is caused
mainly by the development of instability of the roof beam. In the case of frames with
[ =1there sometimes occurs instability of the column and sometimes a form of stability
loss in which both the column and the beam play a major part.

When further research throws more light on how the column and the roof beam of the
portal frame influence each other, it should be possible to establish formulae and/or
graphs with which an effective length can be determined for both members. It will then
very probably be possible to calculate the critical load fairly accurately with the aid of
these effective lengths and formulae (15) and (19).

Table 4. Results of calculations for the schematized frame members

P, in kKN P, in kN
of the of the
P in kN schematized schematized

a )] S for y = column roof beam 0

10° 1/2 1/14 96,5 80,1 57,4 1,68
10° 172 1/11 1153 102,0 59,4 1,94
10° 1/2 1/8 135,95 1399 64,4 2,11
20° 1/2 1/14 95,1 85,0 62,1 1,53
20° 172 1/11 113,3 108,2 64 1,77
20° 172 1/8 134 148,7 69,4 1,93
30° 1/2 1/14 95,7 92,1 68,8 1,39
30° 172 1/11 113,4 117,2 70,9 1,60
30° 1/2 1/8 133,5 161 76,7 1,74
10° 1/3 1/14 112,2 115,5 49,6 2,26
10° 1/3 1/11 119,7 146,7 51,1 2,34
10° 1/3 1/8 129,4 201,9 54,6 2,37
20° 1/3 1/14 110 121,2 53,6 2,05
20° 1/3 1/11 118,05 154 55,1 2,14
20° 1/3 1/8 130,2 211,9 59,7 2,18
30° 1/3 1/14 108,5 130,2 59,3 1,83
30° 1/3 1/11 118,15 165,4 60,9 1,94
30° 1/3 1/8 127,9 227,6 65,3 1,96

a = slope of roof beam

B = length of column/length of roof beam

S = depth of cross-section/length of roof beam
x =ELJEI

J = correction factor
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Although the results of the calculations for the frames investigated here do not point
in that direction, it will be necessary to devote more attention to the form of stability
loss in which both the column and the roof beam play a major part. The reason is that
under loading conditions which cause the column and the beam to become unstable
simultaneously there is the danger that the critical load will be considerably reduced,
for then the restraining effect that these members have upon each other will no longer
exist.

4 Arch frames
4.1 Frames investigated

Arch frames occur in various forms in constructional practice. For example, a distinc-
tion may be drawn between circular, parabolic and sinusoidal arches. They may be used
as three-hinged or as two-hinged frames (see Fig. 16).

As it was not possible to investigate all these types of arch frame, a choice had to be
made. The doctoral thesis by E. Katzschner [17] played an important role in making this
choice. In his thesis, entitled “Ein Beitrag zum Verformungs- und Kipp-problem des
kreisformig gekriimmten Stabes” (“A contribution on the deformation and twist-bend
buckling behaviour of the circular-curved bar”), Katzschener shows that it is possible to
derive an analytical solution for the critical load on laterally restrained arch frames
which satisfy certain conditions. These conditions are:

a. The frames must have a constant radius of curvature (circular shape) and a constant
single symmetric cross-section.

b. The frames must be laterally supported along the whole length of the arch. Such
support may be applied at any point within the depth of the curved beam, but the
location of that point must be constant all along the arch.

c. The stiffness of this lateral support must be so great that the arch can, at this support,
be regarded as rigidly restrained.

d. The loading must consist of a tensile or a compressive force acting along the chord of
the frame.

e. The arch frames must be provided with fork-type bearings at their ends.

On comparing these conditions with the inferences drawn from the analysis of the twist-
bend buckling behaviour of gable-type portal frames laterally supported by bracings it

/"

Fig. 16. Three-hinged and two hinged arch frame.
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can reasonably be expected that in practice condition (c) will be satisfied in most cases.

With regard to conditions (d) and (e) it can be stated that condition (d) is very suitable
for investigating the twist-bend buckling behaviour of arch members forming part of
a three-hinged frame, but that such frames will in practice usually not satisfy condi-
tion (e).

In the case of two-hinged arch frames the situation is reversed: they usually satisfy
condition (e), but in this case condition (d) is not representative of the critical twist-
bend buckling load in practice.

As for condition (b), it is to be noted that it is satisfied in a great many cases in
practice.

So it appears that the twist-bend buckling behaviour of an arch frame which satisfies
the above-mentioned conditions is not entirely representative of the theoretical
behaviour of the circular arch structures shown in Fig. 16.

It is, however, not unusual to assume that arch frames such as those employed in
constructional practice can be regarded as variants of a basic case. This basic case could
be the arch frame which satisfies the conditions stated here. From this point of view an
analytical solution for the basic case can be of much value in connection with further
investigation of the problem. It was for this reason that it was decided that the time
available under the present research project for studying the behaviour of arch frames
could most advantageously be employed in studying, interpreting and verifying E. Katz-
schner’s research.

In his thesis E. Katzschner, after discussing the geometry of curves, derives the dif-
ferential equations for an arbitrarily curved bar of single symmetric cross-sectional
shape and loaded in an arbitrary manner. Next, with the aid of these general differential
equations, he derives the differential equations for the various sub-sets of the set of
curved structures under consideration. This is done by imposing more and more restric-
tions upon the geometry and the loading of the structure. In this way there ultimately
remains a structure subjected to a particular load, for which Katzschner is then able to
solve the differential equatioﬁs analytically. The structure to which this case is applica-
ble satisfies the conditions enumerated at the start of this chapter.

Since the manner in which Katzschner derives the differential equations for the arch
structures that he ultimately analyses is rather laborious, those equations have here
been derived once again, but using a direct approach. This derivation is given for an arch
frame of bisymmetric cross-sectional shape, a choice justified by the fact that cross-
sections with only one axis of symmetry are seldom used for timber arch structures. The
type of arch structure for which this derivation has been established is shown in Fig. 17.
With regard to in-plane forces acting on it the structure is provided with a hinge at point
A and with a roller bearing - allowing displacement along the chord A-B of the arch -
at point B. As for the out-of-plane forces the structure satisfies the above-mentioned
conditions (b) to (e).
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Fig. 17. Arch frame investigated.

4.2 Differertial equations

The differential equations can be derived with the aid of equilibrium considerations

or energy considerations. As in the case of portal frames, the method which uses the

calculus of variations and the principle of minimum potential energy was adopted, and

the following assumptions were made:

- The structure consists of a homogeneous isotropic material, and the laws of Hooke
and Bernoulli are valid.

- The deformations within the plane of the structure are negligibly small.

The cross-sectional shape does not change during twist-bend buckling.

The loading does nog change its direction of action.

The effect of shear deformation and deformation due to axial force is neglected.

In order to have an interim check, the differential equations have initially been derived
for a laterally unsupported circular arch frame.
The differential equations are as follows (see Appendix E):

25 () e 2
_%(%—SZ)—(%:;(My.¢z)+2sxff%.%_gz.¢z..}=0 (20)

2. EC, (‘fj:ﬂz+%.1)_01,,ed.(%+‘i’fé)_ I (%..}_%)
—%Mﬁ-ﬂ?-(oﬁo (Gliroa = GL— S, i2) @

For the limit case R — o these equations become the differential equations for a lateral-
ly unsupported straight beam (see [3] and [4]).

For the laterally supported arch frame shown in Fig. 17 the relation between ¥; and 7
is approximately expressed by:

Vo= g.xf (22)
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With the aid of this relation and by making use of polar co-ordinates it is possible to
replace the above differential equations by the following differential equation (see
Appendix F)

EG, ( f

2 f 2
-7 [ 1+—) - GItred‘(oz" (1+_)
r r r

2
+ EI, (¢z:: ’{7—2'§ 0 + (PZ) —(My-9,)-f

+Szf2¢z"+2Sxf2¢Z' —Sz-f-r-wz—My~¢Z"f(l+—{-)+My-r-¢z=0 (23)

Katzschner makes use of Galerkin’s method to obtain an approximate solution of this
equation. For the structure shown in Fig. 18 this approach leads finally to two expres-
sions for the critical load.

For the critical tensile load:

— 4 - 7[2 o
a4 —+a—+a—
P ag (14} 4
k= 2 . 1 . 1
n’ . ay ,sin(2m—3ag) sin (2w +300) @o ao)
4r 5 [sin 222 —! —Los 2
’[faoz (Sm 27 dmfag—1 7 dmjag+l 2 02
m [sin(2r —3a0) sin 2w+ aof2)\ r{. a
+f ao ( dnfag—1 —  4mfao+1 ta\siny -

1 8in (27 —3a0) sin 27 +3a0)\ 1 a
T dnfag—1 2 dmjag+1 ) 47057 (32)

for ay = 7 this expression can be written as:

P = 157 (451 + t_lz + %a4)
KT r(567+8r)

For the critical compressive load:

- 7[4 _ 7'[2
— a1—4-+a2—2+a4 Qo
0 a0

P = 2 . 1 . 1
n . ap sin(m—3a)  sin (7 +3a0) ao
—5 (2 - — ap COS —

r[2f ad ( s 2 + 2rfay—1 + 2o+ 1 0 2

. Qo
2 sin = +

n (sin (m —3a9) sin (”+a0/2))+r< 7

Y nfag—1 — 2mfag+1

sin (m —3a0)  sin (7 +3a0)
dfao—1 ' 2nfag+1

) — rag COS %—0] (34)

for ag= 7 this expression can be written as:

3n (61 +a+ 04)

Pe=— 8r(f+7r)

(35)
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= - Pcos o (24)

= - Psin « (25)

= - Pr.(cose-cos $=) [26)

= P.r.sine (27)

= P.r.cose (28)

;e (29)

| dy= Gl red (30)
a,= EIl, {31)

Fig. 18. Schematic of Arch frame investigated.

4.3 Checking the formulae with the Marc computer program

The formulae for the critical twist-bend buckling load presented here are approximate
formulae. Their accuracy is largely dependent on the difference between the chosen
expression for the behaviour of ¢ and the actual behaviour. Katzschner assumes that for
loading by a compressive force the behaviour of ¢ can be described by:

0= by cos T 5—0 (36)

In order to verify this assumption and to obtain some insight into the accuracy of the
formulae derived, a number of arch frames were analysed with the Marc finite element
program. The results thus obtained, together with the values calculated with the aid of
the formulae, are given in Table 5. The eigenvectors associated with these critical loads
are shown in Fig. 19.

Table 5. Results of calculations for arch frames

Pkr with Pkr with Pform - PMarc

arch Marc formula Pyarc
nr. Qg material R in mm hIR (Pmarc) (Prorm) x 100

1 n[2 timber* 10000 0,04 4836 N 5898 21,8

2 nf2 timber* 10000 0,06 7120 N 9274 30,2

3 7 timber* 10000 0,10 11820 N 13434 13,6

4 n timber* 10000 0,07 8270 N 9258 11,9

* deal softwood with stiffness properties as for portal frames

It appears from Table 5 that the critical loads calculated with Marc differ from those
obtained with the approximate formulae. The difference associated with frames sub-
tending a central angle ao = 7/2 is almost twice as large as that associated with a central
angle ag= 7.

These differences are to a great extent explicable with the aid of the eigenvectors. In
all four cases the eigenvector is found to deviate from the assumed cosinusoidal shape, a
deviation which occurs more particularly near the ends of the arch (see Fig. 19).

Since the “edge disturbance”, on account of the length of the arch structure, is of
greater influence in frames with a( = 7/2 than in those with a¢ = 7, it appears logical
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that the difference found to exist between “Marc” and “formula” is indeed greaterin the
former frames.

From the results obtained it emerges that Katzschner’s assumption for the behaviour
of ¢ is a very rough approximation. The inclusion of more than one term in the series
with which ¢ is approximated will certainly yield better results.

It can be concluded from the foregoing that the approximate formulae given for the
critical twist-bend buckling load of laterally supported arch frames with a chord load are
too inaccurate. It can be presumed, however, that with some additional effort it should
be possible to derive more accurate formulae which can then provide a suitable basis for
further investigation.

In discussing the boundary conditions of the arch frame analysed it was noted that

The displacements perpendicular
to the plane of the arch are shown.

! !

Arch 3 Arch &
Fig. 19. Eigenvectors.
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arch members which form part of a three-hinged frame usually have no fork-type
bearing at the top hinge. As it involved little effort to analyse this variant with the aid of
the computer, the critical loads and eigenvectors were, for the arch frames with ag = 7/2
under consideration, also calculated for the case where the fork-type bearing at the top
is absent.

The results obtained are presented here without comment:

arch nr. @ material R in mm hiR Py, calculated with Marc
1 /2 timber 10000 0,04 4012 N
2 nf2 timber 10000 0,06 5965 N

The eigenvectors obtained are respresented in Fig. 20.

.i_
Arch 1 Arch 2
Fig. 20. Eigenvectors.
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5 Summary and conclusions

An investigation into the twist-bend buckling (or lateral torsional buckling) behaviour
of timber portal frames and arch frames is reported. After the problem has been de-
fined, the lateral (twist-bend) stability of gable-type portal frames, resiliently supported
along the upper edge by a wind bracing and subjected to a compressive load acting
along the chord of the frame, is first treated. The differential equations are derived. As
these are not amenable to solution by manual methods, a computer is used in the
further investigation.

With the aid of the results of the calculations for the frames in question it is shown
that the twist-bend buckling behaviour of portal frames with a lateral flexural stiffness
which is 100 times lower than that of the wind bracing is the same as that of portal
frames with rigid lateral support of the upper edge. Furthermore, it appears that the
flexural stress at which loss of stability occurs is, for a high proportion of the frames
investigated, below the failure stress of the wood. For the frames used in normal con-
structional practice the flexural stiffness of the bracing is between 150 and 400 times the
lateral flexural stiffness of the frames, and for this reason the further investigation con-
centrates on studying the twist-bend buckling behaviour of portal frames with infinitely
rigid lateral support of the upper edge.

This behaviour is studied with the aid of eigenvectors calculated by the computer.
These vectors show that in principle there are three ranges of behaviour with regard to
the initiation of loss of stability of the frame:

- a range in which the roof beam of the portal frame develops instability;
- arange in which the column of the portal frame develops instability;
- a transitional range.

The first part of the research is concluded with the derivation of formulae with which
the behaviour of gable-type portal frames, in the first two above-mentioned ranges, can
be calculated with reasonably good approximation.

The second part of this research consists in studying the twist-bend buckling behav-
iour of circular bisymmetric arch frames, with rigid lateral support, subtending a cen-
tral angle of any magnitude and loaded in tension or in compression along the chord.
After derivation of the differential equations of the laterally unsupported arch frame,
the differential equations for the arch frame with rigid lateral support are derived and
are solved with the aid of Galerkin’s method. This method yields very simple formulae
for the critical load. Their accuracy was checked with the aid of a finite element
program, which showed that, considering how simple they are, the accuracy of these
formulae is tolerably good.
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7 Notation

A cross-sectional area of portal frame
F cross-sectional area of arch frame
X, ),z rectangular co-ordinates

b h width and depth of cross-section

L length of roof beam

BL length of column

V%, @ angles

E modulus of elasticity

G elastic shear modulus

EIL flexural stiffness about x-axis

El, flexural stiffness about y-axis

EIL, flexural stiffness of wind bracing
Gl St. Venant torsional stiffness

EC, warping stiffness

I, polar moment of inertia

Sk, Sy, Sz axial force in directions x,y, z respectively
N axial force

N critical axial force

P concentrated load

P critical concentrated load

My, My,M, moment about axes x,y, z respectively
My, critical moment

i I,/A

u,V displacements

rLR radius

e eccentricity of axial force

f eccentricity of lateral support

o angle of twist

v Poisson’s ratio

& axial strain

g stress

Yxy, Vyz,Y2x ~ shearing strain components

% EIW/EIy nondimensional parameter
0 modification factor

S (portal frames): 4/L, nondimensional parameter
s (arch frames): arc length

U, total potential energy

Gl GL— S, iy

29



——
A WND—O0VOoo IR

15.

16.
17.

18.

30

References

. TIMOSHENKO, S. P. and J. M. GERE, Theory of elastic stability (2nd ed.).

CHEN, W. F. and T. ATtsuTa, Theory of beam-columns, Vol. 2.

. VLasov, V. Z., Thin-walled elastic beams (2nd ed.).
. BLEICH, F., Buckling strength of metal structures.
. BURGEMEISTER, G., H. STEUP and H. KRETZSCHMAR, Stabilitdtstheorie mit Erlduterungen zu

der Knick- und Beulvorschriften (Teil 1 und 2).

. JouNsTON, B. G., Guide to stability design criteria for metal structures.

. Column Research Committee of Japan, Handbook of structural stability.

. VANDEPITTE, D., Berekening van konstrukties, deel 1 en 2.

. Love, A. E. H., A treatise on the mathematical theory of elasticity.

. SOLKOLNIKOFF, I. S., Mathematical theory of elasticity.

. BLAAUWENDRAAD, J. and A. W. M. Kok, Elementenmethode voor constructeurs, deel 2.

. BRUENINGHOFF, H., Spannungen und Stabilitit bei quergestiitzten Brettschichttrigern.

. HempEL, G., Freigespannte Holzbinder.

. Delft University of Technology, Lecture Notes No. 103230 K2, Inleiding tot de stabiliteit van

het evenwicht.

Delft University of Technology, Lecture Notes No. g72.1304590, Ontwerp en dimensionering
van boogspanten.

Delft University of Technology, Lecture Notes No. g50/52/53/K.1, Hout en houtconstructies.
K ATZSCHNER, E., Ein Beitrag zur Verformungs- und Kipp-Problem des kreisférmig gekriimm-
ten Stabes.

NETHERCOT, A. A. and N. S. TRAHAIR, Lateral buckling approximations for elastic beams,
The Structural Engineer, June 1976, No. 6, Vol. 54.



APPENDIX A

Differential equations for the portal frame

Pcosv'

~
A +sin ot
PR Y _urctunT(A 1)
L
a Ve oy-x (A-2 )
Pcosy_’
}' TPsink
Psin v
j g
A roof beam - . - — «P.COS »
I

Pcos y
11
B: column. Psing [ 1
Z
I

lx.u
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btmw
‘I'_~"l' Section II-II

Fig. 21. Schematic diagram of the frame investigated.

The differential equations are derived with the aid of the calculus of variations and the
principle of minimum potential energy.

Roof beam:
The elastic energy during twist-bend buckling is:

1 2.1\2 1 2 1 2 \2
du de d°e
_gEly(j)(F) dz+%GI,§(E) dz+%ECw(§)(-a7) dz

1
o st(d_(_‘f’fz_’w’)) (A3)
o\ d
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The external work done during twist-bending buckling is:
1

du\? L (de\? ! d*u
A, =3P cos v£<ﬁ§) dz+%Pcostp(§)<a;) dz— gMX (@)-(p-dz (A4)

The potential energy is Uy=E, — 4a
1
U= | (%Elyu”2 +1GLg"? +1ECup"? +3EL,(u" +3hp" ) — 3P cos yu'?
0

I
—1Pcos va ¢'2+Mx-u”-(p) dz (AS)

The requirement that must be fulfilled for the critical conditions is: 6 (U) =0
To fulfil this requirement, the calculus of variations yields the following conditions:

L) _ d[3(W)], 4 [3(UY] _

ap —dz[ ' ]+d22[6p" ]_0 (A6)
and

ALy ., | d]3() a(Ut)} ]L_

[—a,? op —LTZ[ T T R e (A7)

On differentiation of U; (equation A5) the equations (A6) and (A7) lead to the following
differential equations and boundary conditions:

1. ELu" + EL,(u"" +3ho™") + (Myx-9)"+ Pcos v-u"=0 (A8)
I
2. ECyp" + EL(u"" +3hp"")sh— GL.- 9" + P cos v Zp 0"+ Mau"=0 (A9)

Boundary conditions:

L
[ELu" + EL(u" +3he") + MypJou' | —
0

L
[ELu" + EL,(u" +3hp" ) + (Mx@) + P cos v-u'|6u | =0 (A10)
0
L
[ECyp" + EL,(u" +3hp" );h]00" | —
0
I L
[Ewa"' +EL,(u" +3hp" )3h— GLp' + P cos v Zp o'l 6p| =0 (A11)
0

Column:
The differential equations of the column can be derived with the aid of the following
relations from equations (A8) to (Al1):

EL, =0, Pcos v=> Psiny, L= BL (A12)
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Differential equations for column:

1. ELu"™ + (Mxp)" + Psin yu" =0
mr " : IP " ”
2. ECyp"™ — GlLg +PsmyZ(p +Mau"=0

Boundary conditions:
BL BL
[ELu" + Myg]ou' | — [Elyu’"+ (My - @) + Psin yu’] ou| =0
0 0

BL JA AL
[ECp" 100" | - [ECW‘”W“ Glip'+ Psiny 4 ‘”'] b0| =0

(A13)

(A14)

(A15)

(A16)
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APPENDIX B

Transforming the differential equations of the portal frame into
nondimensional expressions

The following differential equations are valid for the roof beam:

1. ELu" + EL(u"" +3he") + (My- )"+ Pcosv-u"=0
I
2. ECyo"" + EL,(u"" +3hp"")sh— Gl,- 9" + P cos v /—; "+ Mu"=0
With the aid of
M,=—Psinv-z
these equations can be written as:
1. (EL, + EL)u"" + EL, -3h- 9"+ Pcos v-u"—Psinv-z- p" —2Psinv-9'=0

b

2. (ECy+EL,-ih*)¢"" +3h- EL,u" — GlLp" + Pcos v - p"—Psinv-z-u"=0

Put
z=0-L and u=¢.L=dz=Ldf and du=Ld¢

’ % / __ld_w
1] ? =TLde
,  1d¥ ., 1d%
u = =—5 ——>
L d6? ¢ =17 46?
n 1 d36 n 1 d3¢
Y =—— -
12 46° =T’
m__ 1 ﬁ ////_ldll(ﬂ
=1 d6° =T 46°

(BI)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

With the aid of the above expressions equations (B4) and (B5) can be written as follows

(* denotes derivative with respect to 8):

1 1 1 1
L (Bl +EL) 73 € 4 Ely-3h- 13- @**** + Peos v &** = Psinv-L-0- 759

1
—2Psin v-z-¢*=0

*k

(B8)

1 1 1 I, 1
2. (ECW+EIW~%h2)~—4-(p****+%hEIw~E-.f****— GL-P-¢**+Pcos V‘E-—E-(p**—

L A

1
— Psin v-0-L-z-é‘**=0
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The following nondimensional constants will now be introduced:
El, _P.L’ G, h EC,

—=ux; k= ; ——=0182; —=S§ >
EL, " EL,’ EI, =% ™ oy

=152 (B10)
After multiplying by L* |EL, we can write equation (B8) as:
(L4 2) - & 455 *** 4 ke cos vE** —ksinv-0-9* —2ksinv-p*=0 (B11)

For narrow rectangular cross-sections we may take /, as being approximately equal to
bh® /12. With this value, and after multiplying by L2/Ely, equation (B9) can be written
as:

G4x) 182 o™ L 1S 0. £ _0.1820™ + kcos v5S2p* —ksinv.-0-E¥ =0
(B12)

The differential equations (B1) and (B2) can therefore be replaced by the following non-
dimensional expressions:

L. (14 %)E** 4+ 5xSp*™** + kcos vE** —ksinv-0-p* —2ksinv-p*=0 (B13)
2. (34 %) 4S7@ ¥ L ISHE T _0.1820* + k cos v 5820 ™ — ksin vOE** =0 (B14)

The following differential equations are valid for the column of the portal frame:

1. ELu™ + (Myp)" + Psin yu" =0 (B15)
2. ECw(o””——GIt(p”+Psiny1]7:¢”+qu”=0 (B16)
With the aid of My = — P cos y -z these equations can be written as:

1. ELu™ + Psin yu” — P cos yzp" — 2P cos yp'=0 B17)
2. ECyp™ — GLop" + Psin y % @" —Pcos yzu"=0 (B18)

The length of the columns is SL. Put
z=0-fL and u=¢-0L= dz=pLdO# and du=pLd¢ (B19)

With the aid of the abbreviations introduced for the roof beam it is possible to replace
equations (B15) and (B16) by the following nondimensional expressions (these can be
derived in the same way as those for the roof beam):

1 E¥** L kB2 sin p&** — k-2 cos y-0- 9™ —2kB? cos yp* =0 (B20)
1 . 1
2. lzﬁz-Sz-qo****—0.182¢**+k,6’2s1ny-12ﬁ2S2¢**—kﬂ2cosyﬂ-é**:O (B21)
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APPENDIX C

Eigenvectors

displacement of inner ec
displacement of centre-:
d

1
2
3 isplacement of outer ec

/
~
o = 10" pc = 96500 N
Boo= 3 M = 318,55 KNm
h/L = 1/14 ‘
L = 8200 mm
b= 100 mm

AL 1. | \ s a = 10° P, = 135,95 N
1 ~ \ - B o= 3 Mo = 448,77 ki
- e h/L = 1/8

T~ N L = 8000 mm
e b = 100 mm
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20° p = 113300 N

B o= 3 M - 337,52 N
1 I \' \ N / WL = 11 c
[ L = 8000 mm

100 mm

30° P = 95700 N
B = } M = 250,64 KNm
< | N / hL = 1/14 ‘

\‘ N / L = 8000 mm

! + \/ b = 100 mm
/

s

4

~H s
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30° P. = 133,6 KN
B = = 349,64 KN
) / é " o
~ N h/L = 1/8
| N / L = 8000 mm

b = 100 mm

1/3
h/L = 1714

I K\\,/\ - = ~ L = 12000 mm
L\I P b = 100 mm
[\.\ - P. = 112200 N
3 | - Moo= 399,1 Kim
R -

\I\: \ —
) N
-~ /



N AN _ S— ')‘\\ AN
—N AN N
\f\/\ AN N
N S
SN

1/3

VAR
12000 mm
100 mm

118050 N
383,43 KNm

10°

1/3

1/8
12000 mm
100 mm

129400 N
460,27 N
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30°

1/3

1714
12000 rm
100 mm

LU T ]

= 108500 N
.= 312,7 Kiim

= 30°

F\\\ - 8 =173

- L / h/L = 1/8
[ T~ \1/ 12000 mm

100 mm

\7\\1 N\ / P = 127900 N
] >, M. = 368,61 Kin

T
/
s
S
AN
o -




APPENDIX D

Derivation of differential equation of the schematized roof beam

Fig. 22. Schematized roof beam.

The potential energy (equation AS) is expressed by:

L

I
(]t= 5(%Elyu//Z_,_%GItw/Z+%ECW¢//2__%Nu/2_%NZP_ ¢’2+M-u"~¢) dz (Dl)
0

Furthermore:
u=3h-p (D2)
Equation (D1) can then be written as:

L
!
U= g{%Ely(%h¢”)2+%Glt¢'2+%ECW¢”2—%N(%h(p’)z—%NZp ¢'2+M.gh¢~.¢, dz (D3)

For a state of equilibrium the following condition must be satisfied:

o(U; d [9(U, d [a(U
oU)_ d [3(U)], d [oU)]_ -
dp dz| 9¢ dz°| 9¢
Differentiation of (D3) enables (D4) to be written as:
I
%thIy¢""+ECW¢”N-' G11¢”+N'711h2(0/’+N'—p'¢”+M~‘;h-(0”+M";h'¢N (DS)

A

For narrow rectangular cross-sections /, is approximately bh3/12 so that equation (D5)
can be written as:

(EL,-ih* + ECy)p"" + (h*N+ hM — GL)p" =0 (D6)
and with M= N e this equation can be written as:

(Ely-3h* + ECy) 9" + h’N+h-e-N— GL)p" =0 (D7)
Solution of differential equation (D7):
For narrow rectangular cross-sections:

EC, ~7=b°h? (D8)

41



so that (D7) can be written as:

(xb°h*-E)p" + Gh’N+h-e-N— GL)p" =0 (D9)
Put
.
(0=As1nzz (D10)
" 7[2 H n mn n4 s T
@ =FAsmzz and ¢ =—EAsmzz (D11)

Equation (D9) can now be written as:

4 2

b4 T
(&b*h°E) % Assin % 2= 25 Asin T 2GHN+h-e-N—GI) =0 (D12)
2
EIL
%hz %ﬁ- GII
Ne=—77—""" D13
« th*+h-e (D13)
With S= h/L this latter equation can be written as:
)
El, ES?
Ny=—F—"7— D14
7 ] 3e (D14)
T

For the portal frame, at the section where the maximum bending moment occurs:
e=Lsinv (D15)
Equation (D14) can now be written as:
2
EI, ES?

?(1+3 sin v)
S

Ng=Pcosv= (D16)

Because of the different boundary conditions and loading, the critical load of the
roof beam will differ a little from the value given by the above equation, e.g., by a factor

o= f(a,B,5).
For the critical load of the roof beam we can then write:
2
EI ES?
P = - 5 D17
cos v I? 1_{_3sinv* ( )
S
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APPENDIX E

Derivation of the differential equations of circular arch frames of bisymmetric
cross-section

Fig. 23. Orientation of axes.

The differential equations are derived with the aid of the principle of minimum poten-
tial energy.

Potential energy = elastic energy - work done by external load
For the circular arch in Fig. 23 the following relations can be derived:

9, d*V d*u; dog 1 1
Uy =—"—"——"—5 xy: .

d® dp, 1 %
roods?’

e——— +’ —
ds? ds r r ds ds r =«

dv; du, ws dws

==y W=G T LT g T, (E1)

r

If the in-plane deformations (i.e., in the plane of greatest stiffness) are neglected in rela-
tion to those perpendicular thereto, we obtain:

us=ws=0- (E2)

With the aid of (E1) and (E2) the following equation can be derived for the elastic
energy:

EL ' (o, d*V.\? EC,\ (d%p, d*V, 1\? GL! (dg,
S5 (2 g _ij 4 0 1) dsg I (2
2 o\ 7" ds 2 0 2 0 ds

1dV;\?
+;——S) ds  (E3)

E,
N ds

+—.
ds? ' ds® r

Work done by the external load:
The work done by a fibre, of cross-sectional area dF, under the action of an external load
in the plane of the arch is:

dd, = dP-AL
S, M, S, M,
dp—a-dF_<—1—7———Iy-x)dF=>dAa=[<7—Tyx)A1} dF (E4)
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Al is a function which depends on the displacement quantities and the co-ordinates
(x,y) of the fibre in the cross-section. If the deformation in the plane of greatest stiffness
is neglected in relation to the deformation at right angles thereto, the following expres-
sion can be derived for A/:

1 V. L dv\2 1 4V, x? L g2y 1 4V, y?
AI:E% e %({(dss) ds’s(pz'df +%§J(d 2S)y2ds+f(pz-dsz S ds
1 2 1 1 2 1 2 1 1 2
d-v X dvi\" x dv 2 dvi\"y
— — xds+ )—d —ds— ds— |—yds—Vo,-[—] =d
(5](/72 dszx (s)r S+£ ds)rs gdszys grys (])(p (ds)rs

ds? r ds? r ds o\ds /) r
1) 32p7\2 | 2 2 1 2
dVi\" xy dVx d'Vs xy
-3 —ds+ ) o, — —d E
Zg(dsz) r g 5(0 ds? +§ds2 r s (E5)

The derivations of the equations (E5) and (E8) are lengthy and have therefore been
omitted here. Readers interested in them are referred to E. Katzschner’s thesis [17].

A, = [ dd= [P-Al= 5[(%—$x) Al] dF (E6)
F F F y

If x and y are calculated with respect to the principal axes of the cross-section, then
equation (E6) with

{x*dF+ [ y>dF=i;-F (E7)
F F

can be written as:

V. T TIA b /d 1dV;\?
S, 0, —ds+§5s (—S) ds+13i2 (8, (—‘”—Z+— ) ds+
0

ds r ds

4]
|

+

d*v, o (AW ds
M9 ds—ﬂ M, — (E8)
0 ds r

The potential energy of the arch on undergoing a lateral displacement v and a rotation ¢
can be written as follows:

! &V d*p, d’V 1\ de,\?
U =E,— 4, =1 |EL EC z —| +GI
—rm [ (<G ) e (G G o ()

dp, dV, 1 av; 1 v av;\?
+2( ¢ ‘_'_)+(—'_) :|—2Sz‘¢z'—r—_SZ (-—) -

ds ds r ds r ds

dp, 1 dK\? d*v, dv;
.2 z N s
—i2S, —| —2Myp, — + M, E
b (ds r ds) 4 s° * (ds) r]ds (E9)
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Introducing GI cq = GI, — S, - ipz, the term under the integral sign in equation (E9) can
be written as:

v, ¢, d’p, d’V, 1\ dp,\?
[EIX( ds 2 +¢) ECW( ¢ +__s;) +G1tred(d¢z) +2 GItred‘%‘_%_'_
S

ds? ds? r ds ds
Gl req AV, 14 dv; d*v, dv;\? 1
+—|—| =25, 2~ S, —2M,p, — .
r? (ds) ¥ ( s) vPz ds? + My (ds) r] (E10)

If the displaced and rotated position of the arch represents a state of equilibrium, then:

ouy=0 (E11)
With the aid of the calculus of variations it can be shown that this condition is satisfied
if:

op e . e 1
-aI/S S+§Vs’ S+a—I/SH s s=0 (E12)

O — —

and

(E13)

[ 8D oD oD ]
5 V4 /5 Z/ ”5 z" d _0
A T A T A

O — —

D= U, see equation E9

Applying partial integration, the following differential equations and boundary condi-
tions can be derived from (E12) and (E13):

d*Vv, d’p, 1 d*p, 1 d*V, 1\ Gla[d’e, d*V; 1
1. EIL ——5- - vl -
(ds4 ds? )+ CW(ds4 r+ ds* r2) r (ds * ds? r)
d*V, | M, d> d’v 1 1
- A ) M Z 2Sx—“'_— = E
dsz(r ) dSZ( v 9a) + ds r Z¢Zr 0 (E14)
dle, d*v; 1 d*p, d*V, 1 v, 1 ¢
2 B (d FrRarr r) Gl”e"(cis2 +'&?'?)_EI"<ds;'7“r_§)_
a*v, M,
_dTZSMy“LTy'% (E15)

The following relationships are incorporated in these equations:

. 1
du, ds. ~ and My=—S,r (E16)

ds — —
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Boundary conditions:

d*v, d’ . 1 a*v, 1 s=1 &V, de, 1
o (o (G5 2 oo [ (575
=0

ds? roods? or

d o, 1 d3Vs 1 d(ﬂz Gl req dp, 1 dV;
+ EC, - -
(d3 rods? r2) Yds (ds+r ds)+
+5, 80y, 95 1](5VS|=1 (E17)
ds T s r] o !,
d*e, d*V, 1 s=! o, d’V; 1
EC, ~)|o0i | —|EC, )
e (G| o, - e (8 5
do, dV 1)] =
— Gl ( + 09, E18
tred ds ds r [ Slo ( )

With the aid of the transformations given below, the differential equations and bound-
ary conditions obtained can be transformed to polar co-ordinates:
d dv 1 dp, d"¢, 1 d'M d"'M 1

7 - = - = — E19
ds" da r“’ ds"  da"™ 7 ds™  da" " (E19)

The new variable is a = s/r. The derivatives with respect to a are represented by dot
superscripts:

V:: I/s I/S:: .
1. EI (7_ ¢Z--) — Gl req <7+ q);) +EC, (7+ "’:2 )— Vo(My—S,-r)

— (My- @)1+ 28 Vir— S,0,* =0 (E20)

VS:: ¢ZZ: VS I/s
2. BGy (~5+ 25 ) = Glica (74 02| = Bl (= 02 | = VoM, + My r=0 - (B2D)

Boundary conditions:

EI, (VS R (pZ;R) +EC, (wz LR Vsr’R) Gltred(V R+¢Z,R)—My<0z‘,R+

+S,Vi,Rr— MyV:,R=0 (E22)

EL (VS’R—(/)Z, )+ECw (%’R V;rZR) Myp;,r=0 (E23)

EC, ((pz‘"; A Vsm; R) — Gliea (m, VS"R)=0 (E24)
r r r



APPENDIX F
Circular arch frames with a restrained axis of rotation
Ifa circular arch is rigidly supported at a distance f from the centroid of its cross-section

so as to prevent lateral displacement and if f<< r, then:

Vs f
=Qf=\p,+— |- f= V= e =0 -f (F1)
With the aid of this relation the equations (E20) and (E21) can be written as:

s S

EC, .
1. E[x <¢z 7_(0{)_G11red(ﬂ.z' (1_‘_%)4_7_(02.. <1+%>“‘¢i.f(My_Sz'r)_

— (My@,) r+ 28, fo;r—S,-0,-r*=0 (F2)

2. ECW% (Pz:: (1 +%>—‘ Gltredwi. (1 +{')_E]X ((oz l_ ¢Z)_

r

By multiplying (F3) by f/rit becomes possible to combine (F2) and (F3) into the follow-
ing differential equation:

2 2
E;‘_CZ'W¢Z:: <1+_‘§) —Gltred'¢i. (1""’%) +EI ( (7% _f;2_2;};(:¢2+¢2)_(My¢z)f+

+8,f20; + 28 f20; — S, f- 1 0, — Mypsf (1 + é) +M,rp,=0 (F4)

For the structure shown in Fig. 24 equation (F4) can, by making use of symmetry con-
siderations, be written as:

E . 2 2 - 2
r—c2:w¢zh (1+_{:’) _GItred'¢i. (l+§) +E1x <¢z“ %_2§¢2.+¢2)+

+P-r-f (2+%) (cos a — cos %) 05 —}72 cos ap; — 2Prf (1 +%) sin ag; —

—P-r? (cos @ — cos ?2—0) 0, =0 (F5)
S, =—Pcosa (F6)
S =—Psina (F7)

@
My=—P-r. (cos a — cos 7) (F8)
M;=P-r-sin a (F9)
My =P-r-cos a (F10)
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Fig. 24. Schematic of arch frame.

Katzschner obtains an approximate solution to this differential equation with the aid of
Galerkin’s method. For this purpose an approximation for ¢ is provided by the follow-
ing series:

0, = Z biz(a) (F11)
i=1

In this formula &; is a constant and z(a) a function which satisfies the boundary con-
ditions applicable to the case.
These boundary conditions are:

%o (20 . _ %0 _ L% _
(oz(7)=0, sz(z)—O, wz( 2)—0 and (oz( 2)—0 (F12)

For an arch loaded in tension Katzschner chooses the following expression for ¢ :

.= by sin 2k aio; k=1,2,.. (F13)
whence follows:
5 = b 2k = cos2kn — (F14)
ao [20))
2
G = — b 4k sin 2kn = (F15)
g a
3
Gt = — by 8k cos 2km — (F16)
ag ag
AN a
@; = b16k™ — sin 2kn — (F17)
ao (1))

The following expressions will now be introduced:

ECW 2 2
a2 (1 +£) e (F18)
r r r
2
ay = Gl eq (l +§) +2 l:— EI, (F19)
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a=f (2 + é) (F20)
ay= EI, (F21)
With the aid of these expressions the equation (F5) can be written as:
. a\ f?
a9, — aryp; + asp,+ P-ri| as [cos a — cos 5| cosa| e —

VAN . Qo )
-2f 1+7 sin a-p; —r{cos a —cos 5 | ¢, =0 (F22)

Basing ourselves on the limits of integration @« =0 and a = /2, we obtain for the
“Galerkin” equation:

=2 4 2
A a ne a ) a
b 5 a16k* — sin® 2kn — + aydk? — sin? 2kn — + a4 sin® 2kn — +
a=0 Qo Qo Qo Qo Qo
7’ a Qo a
+ P-r|4ak’ = [ — cos a sin® 2km — + cos — - sin® 2kn — +
ag [20)) 2 (21))

2 2
+4Lkzlzcosasin22kni—4f<l+£) k- sin @ cos 2k — sin 2kn — —
rooa r

0 @o Qo (1) Qo
a
— rcos a sin’ 2kn i+ r cos %o sin® 2kn ~” da=0 (F23)
Ao 2 [0 1))

Besides the trivial solution b; = 0 there is an eigenvalue if the integral is equal to zero.
With the aid of the following definite integrals the expression for the critical load can
be written as equation (F27):

a

)

a

I

|

2 ot Ede =20 -
sin® krn o da = 4 (k=1,2,3,..) (F24)

| —

a=0

=20 . @9 . (oo T
a=7 sin (— — 2k7r) sin (— + 2kn)
f cosozsin22k7t-g—dot—lsin@—l 2 + 2
T2 4 (F25)
a=0 Qo 2 T b4
1—4k— 1+4k—
L @9 o
a=3 . . sin (%——an) sin (%+ 2k7r)
5 sin a sin 2kn P cos 2kn a da=1 — - (F26)
a=0 0 1} 1—ax ™ 1 + .
L 241} Qo
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./ sin (9’1’ - 2k7z)

4 2
2
a14k4”—3+azk2n—+a429+P-r 2a3k27r—2 —sin—4i—%2 1,
agp Qo ag 2 /4
1—4k—
0
. [@o . [ao
+3 p +?COS‘7 +2'r—k Ez s1n7—5 p —
1+4k— ° 14k
0
sin <%+2k7t) f sin (%—-an) sin (%9+2k7t)
=3 n _f(1+7)kao T n
1+4k0‘—0 1_4ka_0 1+4ka—0
|, s (%—ym) sin (%+2kﬂ) . .
-3 sin — — 1 -1 +Za0cos70 =0 (F27)

/A V(4
1— 4k — 1+ 4k—
[ 1)) ag

Since f<<r, the quotients of f and r ( f/r) can be neglected, so that (F18), (F19) and
(F20) are then changed as follows:

EC,

a1$51=—2-; a2:ﬁ2=GIlred; (l3=>2f (F28)
r

The least eigenvalue (P) is obtained for k= 1.
With the aid of the above derivations for following expression is obtained from P:

4 2

_ nt _7m a
a-4-—+a—+as—
P ao [ 1)) 4
k . Qo . 2]
2 sin (27 — — sin (27 + =
/A .o 2 1 2 o (o))
r| 4f —| sin——3 -3 ——cos — |+
ag 2 b4 T 2 2
4——1 4 —+1
Qo Qg

. 240} . Qo . Qg
sin (27: — 7) sin (27z + -2—) . @ | sin (Zn — 7)

T
+f— - +5| sin5—3 -
2 2 2
R R 4741 4=
Qo ') [L10]
in (27 + %2
lSll‘l 7t+2 r o
—-2“—*_—7[ —Za()COS? (F29)
4 —+1
Qo

50



For ay = n this equation can be written as:

- - 4
157 (4(11 + a; +‘?4‘)
r(56f+8r)

P = (F30)

For an arch loaded in compression Katzschner chooses the following expression for Q:
_ a

@, = b; cos kn P k=1,3,5,.. (F31)
0

whence follows:

Pi =—bik —sin kn — F32

/(pz =—b aosm ”ao ( )
n? a

@; =— bk? —zcos kn — (F33)
o o
n® a

;= bk’ —3s1n kn — (F34)
agp Qo
4n4 a

;"= bk’ —;cos knr— (F35)
o Qo

Basing ourselves on the limits of integration & =0 and a = a2, we obtain for the
“Galerkin” equation:

a=20 X
0 4
n a n a ,,
by | {ak* —5 cos*kn — + a,k? =5 cos*km — + a4 cos*km — —
a=0 Qo [49] Qg Qg [L2)
2 2
n a ao a f ), @
— P-r|ask® = | — cos a cos’km — + cos — cos’kn — | + — k> —2 cos a cos"km — +
ag (o1)) 2 o r Qo (e 4))

n . a a a
+2f 1+f— k— sin a sin kx — cos kx — — r cos a cos’km — +
r ag ao ao [21))

— 2 — —
+rcos 2 cos kna ]}da 0 (F36)

With the aid of the following definite integrals the expression for the critical load can be
written as equation (F40):

S

2 & g %0 _
Jcostkn oda=" (k=13,5,.) (F37)

| =
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as sin (99 - kn) sin (@ + kﬂ)
2 a L. Qo 1 2 2
| cos a cos kna—da=551n7+; e pu (F38)
a=0 0 1-2k— 1+2k—
Qo 2]
a=% . . sm(%—kﬁ sm(%+kﬂ
) sinasinkna—cos kna—da=% — = - (F39)
a=0 ‘ 1—2k— 1+2k—
L Qo 1))
- ' (ao k)
4 2 2 sin 7— T
a1k4n—4@+a2k2§—2@+a4@—P-r a3kzz7:—2 —%sin@—%——
[ 1)) 4 ago 4 4 g 2 T
1-2k—
L Qo
. [@o . [Q0
(3 0 ) sl w (5
T
1+ 2k— 0 1—2k—
Qo Qo
sin (% + kn) f x sin (%— kn) sin (%9 + kn)
Ml b | PRI } ]
b4 r g b4 T
1+4+2k— 1-2k— 1+2k—
o 1) o
sin @—kn sin @+k7r
roay 2 . 2 ag a
—5 sin—5+3 +3 +r—cos~- =0 (F40)
2 b4 T 4 2
( 1—-2k— 1+2k—
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Again neglecting the quotients of f and r ( f/r) and putting k=1, we obtain for the
smallest critical load:

_ 71'4 _ 71'2
ay—z+ay 5+ a4 Qo
a0

Po=— %0
sin (n ao) sin (n + ao)
) _ 20 Z0
b4 a 2 2
r Zf? 2sin—2—0+ - + - —ococosﬂ —
0 2-_1 2= 41
. Qo 240}
v. Qg . @
sin |z — - | sin {7 + 5 o
—2f&~ pm - p= + r 231n7+
"\ 221 2—+1
g [21))
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. @) a
sin 7'[—2 Sin 7'L'+2

+ %o
+ — ray COS =
b4 T 2
2——1 2—+1
[e4)) oo

For @y = = this equation can be written as:

—37[(51 +a; + 04)

8r(f+r)

Po=

(F41)

(F42)





