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1 Summary

A reliability analysis with respect to fatigue failure was performed for a concrete gravity
platform designed for the Troll field. The reliability analysis was incorporated in the
practical design-loop to gain more insight into the complex fatigue problem. In the
analysis several parameters relating to wave excitation, structural response and
material properties of the concrete were considered as being stochastic. From the work
done it is concluded that designing a concrete platform for the Troll field with respect to
fatigue is indeed feasible despite the extremely severe boundary conditions and the
many uncertainties associated with the fatigue problem. Furthermore it is concluded
that introducing the reliability concept in the design stage is both feasible and useful.

2 Introduction

The design of offshore structures sometimes demands an extrapolation of experience
and may involve as a consequence considerable uncertainties. In addition to this, off-
shore structures involve high construction costs, and failure may lead to very serious
damage. The best way to cope with these difficulties is to perform a probability-based
reliability analysis. Thus the safety problem is approached in a logical and consistent
way and a good insight can be obtained into the importance of the various uncertainties.
A reliability analysis, indeed, can be conceived as an extended type of sensitivity
analysis.

In the past ten years the reliability concept as a tool for designing and analysing struc-
tures has received more and more attention. In the field of offshore structures, for
instance, this subject has been a substantial part of the STUPOC and MaTS$ research
programs in the Netherlands (Bouma et al., 1979, Karadeniz et al., 1982). Until now,
however, the methods have seldom been used in the practical “design loop” of actual
structures. The study presented here aims to show that incorporation in the design loop
of a specific structure is practicable and leads to valuable results.

The structure under investigation is a concrete gravity platform from NOCS (Nor-
wegian Offshore Concrete Structures) called “ASTRID”. It consists of a central shaft
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Fig. 1. The ASTRID concept.

supported by sixteen so-called “struts” which transfer loads to the foundation structure
and provide bouyancy during construction. The design is represented in Fig. 1. The
platform has been designed for the Troll field, which is located in the Norwegian Trench
in a water depth of approximately 340 meter. The sea bed at Troll consists of extremely
soft clay, the sea climate is very severe, and last but not least the design mass of the deck
structures is 60 000 tonnes. This set of severe boundary conditions takes the design into
a somewhat unknown area. Major uncertainties concerning soil characteristics, damp-
ing, long-term sea behaviour and fatigue properties of the concrete justify the use of a
reliability analysis.
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3 Wave climate and wave force analysis

The time variability of the sea waves has been dealt with in accordance with the well
known concept of piecewise stationary sea states. Within every sea state the water
elevation is assumed to be described by a zero mean Gaussian distribution and a multi-
directional (cosine square) Pierson-Moskowitz spectrum S, (Fig. 2). As far as the long-
term statistics are concerned, measured data from the northern part of the North Sea
were available, for the main wave direction as well as for the significant wave height H,
and the zero crossing period 77. It was considered convenient to replace the scatter
diagram for H; and 77 by a continuous representation (see Fig. 3). This leads to a joint
two-dimensional density function, which can be written as:

stTz(h’ l) :st(h)szle(t;h) (D

where fii,(h) is the marginal density function of Hy, for which a three-parameter Weibull
distribution has been adopted. The function fr,(t; &) is the conditional function of 77,
which could be described by a shifted lognormal (three-parameter) distribution. In the
reliability analysis presented in Section 6 the shift parameter for the zero crossing
period 77 has been introduced as a random basis variable. This has been done in order to
simulate the uncertainty involved in the derivation of the joint density function (1).
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Fig. 2. Multidirectional Pierson-Moskowitz spectrum.
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Fig. 3. Statistical data for Hs and T7.

The transfer function for the wave force at each point of the central shaft has been
found by applying linear wave theory and Morison’s formula (Fig. 4a). Morison’s
formula consists of a linear part (inertia forces) and of a non-linear part (dragforce).
Because of the comparatively large external dimensions of the structure (minimum
external diameter of central shaft is 19 m), the drag force can be neglected for wave
heights less than 38 m. Hence only inertia forces have been taken into account. For the
high wave frequencies a correction based on diffraction theory has been applied
(Chakrabarti, 1973). This correction does not only affect the wave force maximum at a
specific point of the structure but also the phase shift of wave maxima over the height of
the structure. This phase shift further reduces the maximum wave force.

4 Structural analysis

The results of a feasibility study carried out earlier indicated that the possibility of
failure due to fatigue damage in the cross-section at 310 m from the bottom (at an
arbitrary point P) should be investigated in more detail. Therefore the analysis of the
dynamic behaviour of the structure concentrated on obtaining the transfer function
from water elevation to maximum stress at the point P.

In general, detailed finite element modelling is often used for describing the dynamic
behaviour of a complex structure such as the one here under discussion. Since areliabil-
ity analysis demands several repetitions of the evaluation of the dynamic behaviour,
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however, the use of a finite element model could greatly increase the total computation
costs. Therefore the structure has been modelled in a very simple way, introducing only
three degrees of freedom. This approach leads to closed-form solutions for the response
of the structure under harmonic wave loading.

The dynamic model is shown in Fig. 4b and consists of a non-uniform element with
two nodes and three degrees of freedom (vi,v,,vs3). The linear soil springs K; and K,
represent the stiffness of the foundation against a horizontal displacement v, and a
rotation v; respectively. In a first attempt to solve this problem a stiffness matrix was
derived by applying unit loads and the mass matrix was found by a simple lumping
procedure. However, due to the very small number of degrees of freedom and because
of the large mass and stiffness variations between the nodes, lumping of the masses
resulted in a very unsatisfactory description of the dynamic behaviour of the structure.
Therefore a different approach has been adopted. Stiffness and mass characteristics of
the non-uniform element from Fig. 4b have been represented in the three degrees of
freedom by applying the basic principles of finite element theory. Using interpolation
functions for the displacement field, both a stiffness matrix and a consistent mass
matrix have been derived, including added water and soil masses. At this stage the three
eigenfrequencies and the three eigenvectors (in the three degrees of freedom) are
obtained in closed form. The three oscillation forms are then derived using the eigen-
vectors and the interpolation functions, again in the same manner as is usual in finite
element analysis. Response of the structure is finally obtained by standard modal
analysis.

Due to the small number of oscillation forms, it can be questioned whether the quasi-
static part of the response is calculated sufficiently accurately by describing the total
response by means of modal analysis. To avoid an inadequate description of the quasi-
static part of the response the total response has been divided into a staticand a dynamic
part:

M= Msla!ic + Mdynnmic (2)

where M is the total bending moment at the cross-section under consideration. The
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Fig. 4. Schematization for loading and structure.
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static part of the bending moment response M. is easily obtained from the wave load
p(x): d

Miiaiic = xs {X— Xp}p (X) dx (3)

p
where d =340 m is the water depth and x, =310 m is the x-coordinate of the point P.
The dynamic part Mgynamic iS given by:
385m
Maynamic = XS (x— xp)m(x)u(x) dx 4)
p

where u(x) is the dynamic horizontal displacement field of the structure (obtained from
the analysis described before) and m(x) is the mass distribution over the height of the
structure. In order to check the results from the one-element model, transfer functions
from horizontal force at the waterline (x=340 m) to the bending moment at level
x=310 m have been compared with ICES-STRUDL runs on a finite element model
(Fig. 5). From Fig. 5 it can be concluded that in the frequency region of interest the
results are in excellent agreement with each other for a wide range of the soil stiffness.
Fig. 6 represents the transfer function from water elevation to stress at point P
(x=x, = 310 m), as obtained by the simple model for the mean values of all the relevant
parameters.

When the transfer function is known, the resultant stress spectrum at point P origi-
nating from wave excitation can easily be computed. For the further fatigue analysis
only two characteristics of the response spectrum are of interest, namely, the area or
variance (mg) and the second moment (1n5).
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Fig. 5. Comparison of transferfunction Hyr of the model with ICES-STRUDL runs for various
values of the soil stiffness.
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5 Fatigue model

The fatigue model establishes the relationship between the stresses and the damage of
the material. Starting point of this relationship is Miner’s rule, which states that the
damage after n; cycles of stress range s=2s; (twice the stress amplitude) equals:

Di=2% )

where N, is the total number of cycles to failure with respect to a stress range 2s;. This
number N; can be expressed as a function of the stress range S by a so-called S— N
curve. In this study straight S— N lines on log-log scale have been adopted:

25, 7K
[z

In (6), Sk and k are constants which can be determined by constant-amplitude tests.
Supposing the response spectrum to be narrow-banded, which in view of the transfer
function of Fig. 6 is a reasonable assumption, the stress maxima are Rayleigh distri-
buted:

2
s s
S)=—7€Xp|—x— 7
206) = e | =502] 0
where ¢ is the variance of the stresses and is obtained from the response spectrum.

Applying the Rayleigh distribution of the stress maxima, the damage after the total life-
time 7, can be written as:
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Fig. 6. Transferfunction from water elevation to stress.
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where T, is the mean stress period within a sea-state which is derived from the response
spectrum.

By definition failure due to a constant amplitude loading occurs when the total
damage equals one. Applying random variable-amplitude loading, however, failure
may take place at other values of the total damage due to influences associated with
the “loading history”. The value of Dy at which failure occurs will be further designated
as Dp.

For concrete the S— N curve is dependent not only on the concrete strength but also
on the mean stress. At the cross-section at 310 m here under discussion the mean stress
due to deck weight and prestress is 12 MPa. The concrete cube strength is 55 MPa. For
these values of mean stress and cube strength two S — N curves have been adopted to
indicate the model uncertainty related to the S— N curve. One is Wagaard’s curve
(Wagaard, 1981), which forms the basis for the S— N curve as prescribed in the DNV
rules. The other curve adopted is provided by Van Leeuwen and Siemens (Van
Leeuwen et al., 1980) and resembles the curve used in the NPD rules. Both curves
are shown drawn to a log-log scale in Fig. 7. For values of S higher than 24 MPa
(log S=1.38) tension will occur, which prevents the use of the above mentioned S — N
curves. For values of log N greater than approximately 6.5 the curves are not based on
measurements but solely on theoretical extrapolations.

From this it may be concluded that the curves are based on a rather small region of
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Fig. 7. Fatigue models for plain concrete (cube strength 55 MPa, average stress level 12 MPa).
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observations, which explains the large differences between them. Hence considerable
model uncertainty is associated with the S — N curve. To incorporate this uncertainty in
the reliability analysis, mean values and standard deviations for Sg and k have been
estimated, resulting in a coefficient of variation (standard deviation divided by mean
value) of 0.2 for Sr and 0.1 for k. Furthermore a strong negative correlation between Sg
and khas been assumed. This results in a 95% confidence interval for the S — N curve as
shown in Fig. 7. It is felt by the authors of this paper that this confidence interval more or
less represents the uncertainty related to the S— N curve.

6 Reliability analysis
6.1 The level II procedure

To start this chapter, a short description of the First Order Second Moment (Level II)
reliability analysis used in this study will be presented. For more elaborate treatments
the reader is referred to the literature (e.g., Baker and Thoft-Christensen, 1980,
Schueller, 1981). The first step of the procedure is to choose a reliability function Z in
such a way that negative values of Z correspond to failure and positive values of Z corre-
spond to non-failure. Values of Z that equal zero correspond to the so-called failure
boundary. In general, Z is a function comprising a number of stochastic variables,
X1, ... X,. In the level II approximations the reliability function is linearized at a point
X?,... X2, Suppose that the stochastic variables X; are mutually independent and that
their mean values x (X;) and their standard deviations ¢ (X;) are known. Linearization at
X0, ... XY then results in the following approximation of the mean value and standard
deviation of Z:

w(2)= 20,0 + X 00) - X5 ©)
7= |ot) 5| (1)

The derivate 0Z[0.X; is evaluated at the point X’ Assuming a normal distribution for Z
we can then determine the failure probability from:

0

P{Z<0)= [ fi(z) dz=gn(—p) (11)

— 0o

p=u(2)o(2) 1

where (8 is the reliability index, f7 the normal distribution for Z and ¢, the distribution
function for a normally distributed variable with zero mean value and standard devia-
tion equal to one. If the values for X are equal to the mean values u (Xi) the procedure
described above is called a level II mean value analysis. In the actual calculations,
however, also the more accurate AFDA (Approximate Full Distribution Approach) has
been employed. In this approach the linearization is performed at the so-called design
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point, which is defined as the point on the failure boundary corresponding to the highest
probability density. This design point has to be evaluated iteratively.

According to equation (12) the total variance 02(Z ) is the sum of a number of indivi-
dual contributions, each resulting from one of the basic variables. This opens the possi-
bility to quantify the relative importance of the various variables as the ratio a? of the
individual contribution to the sum:

0z 2
[a‘fi o (Xi)]

S

i

13)

The a; are often referred to as the probabilistic influence factors. In order to have a high
influence, a variable must be highly uncertain (large ¢(X;)) and the structure must be
sensitive to the variable (large Z/d.X;). This confirms the validity of the statement made
in the introduction that the reliability analysis can be regarded as an extended sensitiv-
ity analysis.

6.2 Reliability function
The most obvious way to define the reliability function in this case would be:
Z=Dg— Do (14)

Because of the logarithmic character of Z, however, this reliability function may lead to
numerical problems in the iteration proces. Therefore we follow (Karadeniz 1982) and
define the reliability function as:

Dy
ZZ_IH[DJ 15)

where D,y is presented by (8).

6.3  Numerical data and results

The stochastic variables together with their types of distribution, their mean values and
their variances (standard deviation divided by mean value) are presented in Table 1.
The last column of this table shows the relative contribution a ? of each parameter to the
variance of Z (see 13).

The stochastic parameters can be grouped into “wave parameters”, “structural
parameters” and “fatigue parameters”, corresponding to the set-up of the analysis.
The respective parameters will now be briefly examined in that order.

The first stochastic parameter in the wave force model is concerned with the un-
certainty in the long-term description of the zero crossing period 77 (see Section 2). The
coefficient of variation of a parameter P of T, has been evaluated as 0.05. This
corresponds to a coefficient of variation in the wave steepness of approximately 0.10.
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Table 1. Statistical properties for the various random variables and their contribution a?(x) to
the variance of Z. (Advanced level II analysis, resulting in # =4). The parameter Srand
k are correlated (¢ = — 0.95).

x designation u(x) V(x) a?(x)
Cr parameter 7, distribution 1.6688 0.05 8%
d waterdepth 340 m 0.02 5%
Cu inertia coefficient 2.0 0.15 15%
my deck mass 60.000 ton 0.05 3%
C soil strength 70 kPa 0.25 8%
E Youngs modulus 40 GPa 0.05 2%
t wall thickness 1.1 m 0.05 2%
M, rotation inertia subsoil 1.0 0.25 0%
¢ damping 0.03 0.35 17%
Sy intersection SN-line 136 MPa 0.2 400
k slope SN-line 7.5 0.1 0
Dy critical Miner sum 1.5 0.25 1%

The effect on the total result is not inconsiderable (a2 = 8%).

Because the cross-section at 310 m lies only a small distance below the water surface,
small variations of the water depth could result in large variations of the damage at
310 m. Additional uncertainty is related to the “water depth” caused by sea-bed un-
evenness, tidal range uncertainty and uncertainty concerning the settlements of the
structure. Therefore is was felt that the water depth should be treated as a stochastic
parameter. The very small coefficient of variation of 0.02 that has been assigned to the
water depth, however, still has a non-negligible effect (oc2 =5%) on the safety.

A frequency-independent coefficient of variation of 0.15 has been assigned to Gy,
quantifying in a intuitive manner the rather large uncertainties associated with this
parameter. The effect of the inertia coefficients turns out to be important (a2 = 15%).

Stochastic parameters relating to the structural model are the deck mass, the soil shear
strength ¢, (related to the stiffness of the foundation), the modulus of elasticity E, the
wall thickness tat 310 m, the added soil masses M; and the damping ratio ¢ of the first
mode. It should be noted that all coefficients of variation assigned to these parameters
are based on intuitive considerations, which could be updated if more data were avail-
able. Some of the above-mentioned parameters will be briefly discussed.

The stiffness of the soil can be considered as a very highly uncertain quantity.
Estimates from various experts and laboratories may differ by a factor 3 or more. In the
analysis this has been modelled by using a coefficient of variation equal to 0.25, which
indeed represents a high uncertainty. Fortunately it turns out that this high uncertainty
does not have a major effect on the variance of Z (a? = 8%). Also interesting is the
negligible influence of the large model uncertainty A4, involved in the added soil masses
(rotational as well as translational were taken into account, assuming full correlation
between them). The largest contribution to the variance of Z originates from the
damping ratio (a > = 17%). This is caused partly by the large coefficient of variation of
0.35, quantifying the great uncertainty associated more particularly with viscous soil
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damping. Another cause for this large contribution is apparently the strongly dynamic
behaviour of the structure, which will be further discussed later on.

The last parameters to be reviewed are those belonging to the fatigue model. As has
already been discussed in Section 4, the fatigue model consists of Miner’s rule in combi-
nation with straight S — N lines in the log N- log S plane. The parameters Spand khave
coefficients of variation equal to 0.2 and 0.1 respectively, with a correlation of —0.95
between them. It should be noted that the mean stress and concrete cube strength,
which both affect the S— N curve, have been treated as deterministic variables.

Using level II procedures the stochastic variables need to be mutually independent.
Therefore S and khave been transformed into two independent stochastic parameters.
Because of this transformation it is not possible to separate the individual contributions
of Sk and k to the variance of Z.

The parameters describing the S— N curve have a very important impact on the
result. Approximately 40% of the total variance of Z originates from uncertainty in
these parameters.

The main result of the analysis of course is the reliability index [, which has been
found to be 4.0, corresponding to a failure probability of approximately 3 x 10 >,
Having regard to the high uncertainties as reviewed earlier, this result is surprisingly
good and shows that the concept of the structure is very sound. Approaching the fatigue
problem in a deterministic manner, using DNV regulations, it has been found that the
total damage at 310 mjust reaches the upper limit of 0.2 as prescribed in the DNV rules.
It could be concluded that a failure probability of roughly 3 x 10 ~° is embodied in those
rules. This also corresponds to structures designed by the Netherlands rules where a
mean value of the reliability index S of 3.8 has been adopted.

6.4 Dynamic behaviour

In designing for very deep water, soft soil conditions and high deck masses, the first
eigenfrequency will decrease and the dynamics of the structure will make an increasing-
ly large contribution to the stresses that occur. For the structure under discussion here,
the lowest eigenfrequency is 1.28 rad/s, which indeed is much lower than the first
eigenfrequency of most fixed offshore structures. Therefore structural dynamics can be
expected strongly to influence the stresses, which explains the rather large contribution
made by damping and zero crossing period of the waves to the variance of Z. Because of
the above-mentioned, the relation between the first eigenfrequency and the reliability
index has been investigated and is presented in Fig. 8. From this diagram it is obvious
that the dynamics of the structure play an important role in the safety against failure due
to fatigue. It is also clear that a decrease of the first eigenfrequency induced by for
example larger water depths will result in a high failure probability. Additionally it
should be noted that the total damage varies strongly with variations of the eigen-
frequency: between a first eigenfrequency of 1.28 rad/s and 11 rad/s the total fatigue
damage varies by a factor of 2 x 10 ~8. The reliability index on the other hand varies in
this frequency region by a factor 1.8.
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Fig. 8. Reliability index f§ as a function of the structural natural frequency.

6.5 Reliability as a function of wall thickness

A next step has been to investigate the possibilities of enlarging the reliability index
assuming all overall dimensions to be fixed. One obvious possibility is to increase
locally the wall thickness while maintaining the same external diameter. The effect of
this increase is graphically shown in Fig. 9, which shows that local fatigue problems can
be solved by making the wall thicker. This, however, negatively influences the neces-
sary buoyancy during tow-out of the structure. It has been found that the best way to
reduce fatigue damage and to maintain buoyancy is by means of a small increase in the
external and the internal diameter as well as in the wall thickness.
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Fig. 9. Reliability index 8 as a function of the wall thickness.
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7 Conclusions

The probability of failure due to fatigue at the most critical cross-section of the structure
under investigationis 3 x 10~ 5 which is anacceptable value. Hence it can be concluded
that it is quite feasible to design such a structure with regard to fatigue despite great
deck mass, great water depth, soft soil, severe sea climate and the considerable un-
certainties associated with the fatigue problem. Due to the strong dynamic behaviour
of the structure, however, a water depth in the order of 340 m should probably be
regarded as the economically attractive upper limit for this design.

Additionally it can be concluded that incorporating the reliability concept in the
practical design loop is indeed possible and very valuable asa basis for design decisions.

The great uncertainties associated with the S— N curve for concrete have a major
effect on the confidence level of the design. The authors of this paper therefore feel that
more data concerning the fatigue behaviour of concrete, especially under small-
amplitude stress cycles, should be gathered. In future analysis it is furthermore re-
commended to take the cube strength of the concrete as well as the mean stress into
account as stochastic parameters. Both have an influence on the S— N curve and can
therefore be regarded as potentially important parameters.

Finally it should be noted that in the authors’ opinion the calculated lifetime or
Miner’s sum is not a good criterion for judging the safety against failure due to fatigue,
since this criterion is liable to vary by several orders of magnitude as a result of relatively
small variations in design, boundary conditions or material properties.
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