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Preface

This publication presents the theoretical and experimental results of a research
programme on composite beams with partial shear connection in buildings. It covers
both simply supported and continuous beams. The results provide information on the
influence of the number of shear connectors on the behaviour of composite beams. It
is clearly illustrated that the deformation capacity of connectors has a significant
influence on the resistance of composite beams with partial shear connection. Simpli-
fied methods for ductile and non-ductile shear connectors suitable for the daily
engineering practice are derived from the partial connection theory.

Previously the work was published in Dutch in two reports including background
information on the Dutch Recommendations on composite constructions. In view of
the actual discussion on this topic in the drafting of Eurocode 4, it was decided to
publish in English as well.

The research was carried out at the TNO Institute for Building Materials and Structures
(TNO-IBBC). The project was supervised by a joint committee from the Dutch Centre
for Civil Engineering Research and Codes (CUR) and the Dutch Steel Constructional
Association (SG), which both supported the project financially. The research on simply
supported beams was conducted by prof. ir. J. W. B. Stark. The research on continuous
beams was carried out by ir. H. S. Buitenkamp, ir. J. G. J. Alma and prof. ir. J. W. B.
Stark.

Financial support for this publication was provided by the Dutch Steel Information
Centre (Centrum Staal), the Dutch Steel Constructional Association (Staalbouw-
kundig Genootschap) and the Dutch Centre for Civil Engineering Research and Codes
(Stichting Civieltechnisch Centrum Uitvoering Research en Regelgeving). The main
activities of these Dutch centres are in co-ordinating research and development
projects, encouraging the spread and increase of knowledge and publishing recommen-
dations, specifications and codes.

Acknowledgement is due to Mrs. D. van Hove for her help in summarizing the material
from the original reports and to Mrs. A. Visser for the translation into English.






Composite steel and concrete beams with partial
shear connection

1 Introduction
1.1 Definition

The behaviour of a composite steel and concrete beam is characterized by the presence
of a shear connection between the concrete slab and the steel beam. A full shear con-
nection is formed when the shear connection is so strong that the ultimate load is deter-
mined by the maximum moments of resistance. The maximum load is reached when
the optimum stress distribution occurs in the cross-sections of maximum bending
moment (Fig. 1, cross-section II). The application of more shear connectors cannot
result in a larger maximum load, as the maximum moments are normative.

R : ] e

Fig. 1. Cross-sections that may be critical for failure.

However, when fewer shear connectors are used, this will result in a smaller ultimate
load, dependent on the number of shear connectors applied (Fig. 1, cross-section III).
The shear connection is then defined as a partial shear connection. The limit is reached
when no shear connectors at all are used. In that case the contribution of the concrete
flange can usually be neglected. Then the ultimate load equals the ultimate load of the
steel beam. Fig. 2 qualitatively shows the relation between the ultimate load and the

partial shear full shear

f{<———— connection 1 ——— connection: —=
cross-section IL cross-section I
is critical is critical

ultimate load

ultimate load
of the
steel beam

ultimate load of the composite beam

———= shear resistance in cross-section III

Fig. 2. Qualitative relation between the ultimate load and the longitudinal shear resistance.



strength of the shear connection, where 100% corresponds with the shear resistance in
case of a full shear connection.

The concepts full and partial shear connection are related to the strength of the longi-
tudinal shear connection. The concepts complete and partial interaction only relate to
the stiffness of the connection between the concrete slab and the steel beam.

When slip between the steel and the concrete is completely prevented by the connec-
tion, the interaction is said to be complete. However, most shear connectors have to
undergo some deformation before they can supply any force. In that case the inter-
action is essentially partial. This difference is illustrated in Fig. 3. Fig. 4 shows the
influence of the longitudinal slip on the form of a M-x diagram.

M complete partial no

interaction

Fig. 3. Two beams showing different degrees of interaction.

complete interaction (e.g. bond)
partial interaction

partial interaction: very
ductile shear connectors

moment M

no interaction

-® @06

= first yield of the extreme
fibre of the steel beam

s = failure of the bond between the
beam and the concrete slab

——s= curvature x

Fig. 4. Influence of slip on a M-x» diagram.

1.2 Composite steel and concrete beams with partial shear connection
1.2.1 Motivation for the application of partial shear connection

The application of partial shear connection is of interest in those structures in which
cooperation between the steel section and the concrete slab need not be fully exploited
to get sufficient resistance. This may occur in the following cases.



a. When the concrete slab is not propped, the dimensions of the steel beam may be
determined by the load during laying of the concrete. In that case it is not economi-
cal to determine the number of stud connectors from the full plastic moment of
resistance of the composite cross-section, because the composite beams will then
be too strong for the load applied after the concrete has hardened.

b. According to the deflection limitations the stiffness of the composite beam can be
critical for the dimensions of the beam.

c. For economical and technical reasons a designer may choose a larger steel section
with fewer shear connectors instead of a minimum steel section with a relatively
large number of shear connectors.

1.2.2 Qualitative description of the behaviour

Beams with partial shear connection will fail as a result of failure of the shear connec-
tion. The moments of resistance of the critical cross-sections have to be determined in
order to determine the ultimate load.
The ultimate load depends on:
a. the number of shear connectors, which determines the resistance of the shear
connection;
b. the type of shear connectors, which determines the deformation characteristics of
the shear connection.
Fig. 5 shows the difference in behaviour of ductile shear connectors and absolutely rigid
non-ductile shear connectors. With regard to the stress distribution at failure, the com-
pressive force in the concrete and the resulting tensile force in the steel respectively,
have to be equal to the total shear force that can be transferred by the shear connectors
longitudinally (= shear resistance). In principle various stress distributions may occur.
When ductile shear connectors are applied, slip may occur at the interface between the
steel beam and the concrete slab. Once the ultimate load of a shear connector is
reached, the load remains constant with further slip. Then stress distributions occur in
which the neutral axes in the concrete slab and the steel beam no longer coincide. On
the basis of Kist’s hypothesis (2nd law of Prager), a stress distribution will occur at
failure that leads to the maximum moment of resistance corresponding to the applied
number of shear connectors (provided the deformation capacity is sufficient). This
moment of resistance can be determined on the basis of equilibrium.
When absolutely rigid non-ductile shear connectors are applied, fracture will occur
when the ultimate load of a shear connector is reached without any slip and subsequent-
ly the shear resistance will suddenly drop to zero. So in theory no slip is possible before
failure, which means that the strain distribution and consequently the stress distribu-
tion are fixed. The neutral axes in the steel beam and the concrete slab coincide. As
soon as, under an increasing load, the longitudinal shear force on the heaviest loaded
shear connector becomes equal to its shear resistance, the ultimate load is reached.
Unless the distribution of the shear connectors coincides with the distribution of the
longitudinal shear force, the total longitudinal shear resistance at failure is not equal to
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Fig. 5. The influence of the deformation capacity of shear connectors on the strain and the stress
distribution in case of a partial shear connection.

the sum of the shear resistances of the shear connectors. In reality the so-called rigid
shear connectors that are applied in practice (e.g. block connectors), do have some
deformation capacity, so that some redistribution of the forces on the shear connectors
may occur.

Fig. 6 qualitatively shows the relation between the moment of resistance and the
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Fig. 6. Qualitative relation between the moment of resistance and the tensile force in the steel
beam (=longitudinal shear force) at failure.

resulting tensile force in the steel beam at failure. So, these lines indicate the moments
of resistance for various beams, each with a different number of shear connectors. The
tensile force N,,, which will occur at failure, is determined by the number of shear
connectors. For some specific cases the stress distribution over the cross-section at
failure is shown in Fig. 6. In case of rigid non-ductile shear connectors, failure of the
shear connection has been taken as a criterion. When very few shear connectors are
applied the moment of resistance will be smaller than the plastic moment My, of the
steel beam. After failure of the shear connection, large deformations occur due to a
sudden drop in stiffness. However, after this sudden increase of deformation, it will
theoretically be possible to raise the bending moment to M}, (dashed line in Fig. 6). This
region has no practical use, because application of a composite structure in that region
does not offer any advantages.

The relation shown in Fig. 6 for rigid non-ductile shear connectors, is influenced by
preloading of the steel beam and by internal stresses, for example caused by shrinkage
and creep of the concrete. This means that in case of a partial shear connection and
application of very rigid non-ductile shear connectors, the ultimate load is indeed
influenced by these factors. This contrary to beams with full shear connection and
beams with partial shear connection with ductile shear connectors. This is caused by
the fact that the ultimate load is determined by a part of the structure that does not meet
with the requirements of ideal plastic behaviour of the materials (the rigid connection
with limited deformation capacity).

As an example the effect of pre-loading of the steel beam is illustrated in Fig. 7. The
design curves for rigid non-ductile shear connectors will be different for propped and
unpropped constructions, which is not the case when ductile shear connectors are used
(see Fig. 35). This matter will be elaborated in chapter 3.
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Fig. 7. Relation between the load and the longitudinal shear force i.e. the degree of shear
connection, when rigid non-ductile shear connectors are applied.

2 The resistance of beams with full shear connection
2.1 Moment of resistance of simply supported beams
2.1.1 Elasto-plastic method

The ultimate load of a simply supported beam is determined by the moment of resis-
tance of the critical cross-section. The determination of the moment of resistance of a
cross-section is based on the following assumptions:

a. the shear connectors are able to transfer the forces occurring at failure between the
steel and the concrete (full shear connection);

b. no slip occurs between the steel and the concrete;

tension stresses in the concrete are neglected;

d. the strains caused by bending are directly proportional to the distance from the
neutral axis, in other words plane cross-sections remain plane after bending, even at
failure;

e. the relation between the stress g, and the strain ¢, of steel is schematically rep-
resented by the bi-linear diagram shown in Fig. 8a;

f. the relation between the stress and the strain of the concrete is schematically rep-
resented by the simplified bi-linear diagram shown in Fig. 8b.

o

Based on these assumptions two cases can be distinguished:

a. the neutral axis is situated in the concrete slab (Fig. 9a);

b. the neutral axis is situated in the steel beam (Fig. 9b).

Fig. 9 shows that in case a, the calculation of the moment of resistance is simple. In the
other cases the calculations are laborious. Therefore, a simplified method, applicable
for all cases, will be described in the next paragraph.

10
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2.1.2 Plastic method

The assumptions for the calculation of the moment of resistance are the same as those
used in the elasto-plastic method (see 2.1.1), with the exception of the idealization of
the stress-strain diagrams of steel and concrete. Both materials are assumed to behave
as ideal plastic materials. So the strains are not limited. This is a usual assumption for
structural steel, which is also used, for example, in the calculation of the plastic moment
of a steel section. The idealized diagram of steel is shown in Fig. 10a.

The deviation between the real and the idealized diagram is much larger for concrete
than for steel. If the maximum stress of concrete is assumed to have the same value as
the value in the diagram in Fig. 8, the application of the idealized diagram will of course
lead to an unconservative approximation of the moment of resistance. In practice the
difference has appeared to be not very large. However, to be on the safe side, the design
strength of concrete in the idealized diagram is assumed to have a reduced value kf.
The thus idealized g-¢ diagram is shown in Fig. 10b.

real

fol === —
4y 4 - \4\( idealized
Kt

= Cq
— o¢
S——

|
I
|
|
i
|
|
| ~
|
|
|
|
L

v
Ecu
— g — £

a. steel b. concrete

Fig. 10. Idealized o-¢ diagrams used in the plastic method.

Application of these assumptions leads to stress distributions as shown in the Figs. 11
and 12. Of course the calculation of the moment of resistance M, is dependent on the
position of the neutral axis. The position of the neutral axis is determined by the rela-

ke
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|
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Af, )
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Fig. 11. Plastic stress distribution with the neutral axis situated in the concrete slab.

M, = Af, (m —~ @.1)
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tion between the cross-section of the concrete slab and the cross-section of the steel
beam.

Again two cases can be distinguished:
a. the neutral axis is situated in the concrete slab (Fig. 11);
b. the neutral axis is situated in the steel beam (Fig. 12).

kfe

T K i M Ney = X bek fe
< 1—— ‘ fy T f
’% __! TITT ||y s mmﬁ]
] F==]  Th+tha
) l
< -
<) = — -+
—— — Ng=Ncy
— — |
fy fy

Mu = Ncl,maxz + Mpl,red = Nc,,maxo-Shl + Mpl,red
M, =0.5hhsb kfe+ My req 2.2)

Fig. 12. Plastic stress distribution with the neutral axis situated in the steel beam.

According to [4], the plastic moment reduced by a normal force for standard European
rolled I or H steel sections, can be approximated by:

Nc,,max
My rea=1.11Mp, |1 — —Zf-y_ 2.3)
In this study the expression used in the Dutch Standard [6] is used. This means that

M, eq is calculated according to (2.4) when N pax > 0.154f,,.
N/
My rea = 1.18M,, (1 - A—};) (2.4)

The moments of resistance, obtained by using the elasto-plastic method described in

2.1.1 and the plastic method respectively, will differ. Therefore a parameter study,

described in [1], was carried out for comparison. The results of this study lead to the

following conclusions:

- Within the variation of the parameters the largest difference between the moments

of resistance according to the elasto-plastic method and those according to the plastic
method, with k =1, is about 6%.
The largest difference between the elasto-plastic method and the plastic method with
k = 1 was found for the stress distributions as shown in a2 and b1 of Fig. 9, i.e. when
the neutral axis is close to the top of the steel beam. The differences in the cases al
and b2 are small.

- It may be expected that the plastic method with k = 0.8 leads to a safe value for the

13



moment of resistance. This is only valid if the upper flange of the steel section has
the same, or a smaller cross-section than the lower flange, which will usually be the
case.

2.2 Ultimate load of continuous beams

The elastic moment distribution in continuous beams is not solely determined by equi-
librium conditions, but also by compatibility conditions. When somewhere in the beam
the yield strength is exceeded, a redistribution of the moments will occur. The moment
distribution at failure is not only determined by the equilibrium condition, but also by
the “mechanism” condition. The failure mechanism contains more than one plastic
hinge. To allow for the redistribution of moments, the primary formed plastic hinges
need to have sufficient rotation capacity. Because of these requirements regarding the
rotation capacity, the scope of application for the plastic design is more restricted for
continuous beams than for simply supported beams.
To determine the ultimate load of continuous beams with the plastic design method, no
deformation requirements are needed. The ultimate load follows from the equilibrium
of the statically determinate system at failure. In theory internal forces, for example
caused by shrinkage and creep of concrete, pre-loading of the steel beam in the con-
struction phase or subsidence of supports, have no influence on the plastic ultimate
load. Also the plastic ultimate load of a continuous beam is, theoretically, not
influenced by the stiffness of adjacent spans or by the stiffness of beam-to-column
connections. Of course these factors do influence the deflections. It is possible that the
deflection becomes so extreme, even before the plastic ultimate load is reached, that
the plastic ultimate load no longer has any practical relevance. This implies further
restrictions for the application of the plastic hinge theory.

The basic principles of the plastic design method for a beam over three supports are

schematically represented in Fig. 13.

The calculation of the sagging moment of resistance Mj, is based on the same stress

distribution over the cross-section as discussed in 2.1.2. The stress distributions over

the cross-sections and the equations for the calculation of My, are given in the Figs. 11

and 12.

Analogous to the calculation of the sagging moment of resistance the calculation of the

hogging moment of resistance Mg, is based on the following assumptions (Fig. 14):

a. tension stresses in the concrete are neglected;

b. the reinforcement is yielding, so at failure the tensile force in the reinforcement is
equal to Ny = 4, fqy;

c. all fibers of the steel section are yielding either in compression or tension; from the
equilibrium follows that the compressive force in the steel section is equal to
Nay = N, = A fy; in addition the steel section is able to resist the plastic moment,
reduced by the axial force, M) req;

d. for the time being the possible influence of the vertical shear force on M) ;¢4 is not
taken into account.

14
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Fig. 13. Application of the plastic design method.

Fig. 14 shows a design method for the hogging moment of resistance M, for a rolled I
section without influence of the vertical shear force. The determination of the reduced
moment M, .4 is discussed in paragraph 2.1.2.

My, = Ngy + Mpl,red (23)

Ng= Agfsy Ns
L ——
P
+fy
=
Ngy=N
= ‘uu s MpL.red
~fy |
-fy ~fy

hot rolled I-section

Fig. 14. Determination of the hogging moment of resistance M.

3 The resistance of beams with partial shear connection

3.1 Moment of resistance of simply supported beams

3.1.1 Beams with ideal ductile shear connectors

Based on the behaviour described in 1.2, a calculation method has been developed for

beams with partial shear connection and ideal ductile shear connectors. When the
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shear connectors have sufficient deformation capacity, the stress distribution in the
critical cross-section will be such that the tensile force in the steel beam is equal to the
sum of the resistances of the shear connectors (£S,) and in addition the largest possible
moment can be transferred.

The stress-strain diagrams of steel and concrete are idealised as shown in Fig. 10. The
design strength of concrete is reduced to 0.8/7(k = 0.8), just as in beams with full shear

connections.
Based on these assumptions the stress distribution at failure will be as shown in Fig. 15.

0,87 0,8f

i £
fy fy
(T (T N
My —
- =+ — = <+ = 1
—+— Nay=ISy
fy fy
M = Mp.red + Naquz

steel beam

Fig. 15. Stress distribution if the shear connection is partial.

When a hot-rolled I section is used, the calculation may be simplified by splitting the

moment of resistance into two parts as shown in Fig. 15 (compare Fig. 12). Equivalent to

the derivation of equation (2.2) both parts of the moment can be calculated as follows:

- The part of the moment supplied by the normal forces in the steel beam and the
concrete slab is:

My = N,z = Nyy(m — 0.5x)

Where:
Nau = Nc,u = ZSu
xS,
X=—"
0.8b. 1
Therefore:

My, = ZS,(m—0.5x)

- The part of the moment additionally supplied by the steel section (= reduced plastic
moment) can be approximated for standard rolled European I or H sections by (also
see 2.1.2):

16



N
Mu2 - Mpl,red == 118Mp1 <1 - ;;f:)
Where:
N=N,, =28,

Therefore:

xS,
M, = 1.18M,, (1 - Afj)

When the number of shear connectors and the design resistance of a shear connector
are known (and so X'S,)), the moment of resistance can be determined with the equation:

My = My + My,

2SS,
M,=118M, (1 — + 28,(m—0.5x) (3.1)
Afy
Fig. 16 shows the calculated relation between the ultimate load and the degree of shear
connection according to equation (3.1) for the small-scale beams that are described in
more detail in chapter 4. The values of the ultimate load that were found in the tests are
plotted in the figure. In all tests this equation appeared to result in a safe value of the
ultimate load.
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Fig. 16. Relation between the ultimate load and the percentage of ductile shear connectors for
simply supported beams with a uniformly distributed load.
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Simplified method

Assume that the height x of the compression zone in the concrete slab is known. A safe
value is obtained if x is always taken as the value determined for full shear connections
(see equations 2.1), because when XS, decreases, V), also decreases and so does the
height of the compression zone of the concrete. Thus the lever arm is underestimated
which is conservative.

Height of the compression zone:

A
y < hy

X=—
0.8b. fo~

The lever arm is:

z=m—0.5x
So the moment of resistance M, as described by equation (3.1) can be rearranged as
follows:

3.2)

1.18M,
M, =118M, + 58, [z — =2

Afy

This expression represents a linear relation between M and XS,,. The relation between
the ultimate load and the degree of shear connection for the small-scale beams calcu-
lated with this simplified method is indicated by the dashed line in Fig. 16.

3.1.2 Beams with rigid non-ductile shear connectors

Fig. 17 shows the test results of small-scale beams with partial shear connection and
rigid non-ductile shear connectors (block connectors), which are described in chapter 4,
plotted against the theoretical relation between the ultimate load and the degree of
shear connection determined with equation 3.1 (solid line) and equation 3.2 (dashed
line). Apparently the experimental ultimate loads are smaller than the theoretical
values. This is because the block-type shear connectors do not have sufficient deforma-
tion capacity to satisfy the assumptions of the plastic design methods for ductile con-
nectors as described in 3.1.1.

Beams with partial shear connection and rigid non-ductile shear connectors can be
designed according to a partial interaction theory, based on the real properties of the
shear connection. This design method will be rather laborious and not suitable for prac-
tical use. Therefore it is better to base the design of such beams on the assumption that
no slip occurs between the concrete slab and the steel beam. This is a safe assumption.
If the stress-strain diagrams for steel and concrete are known, the relation between the
ultimate moment M and the number of shear connectors for complete interaction can
be calculated by the elasto-plastic method as is qualitatively shown in Fig. 18 (see also
Fig. 6). In these calculations, in principle stresses due to pre-loading of the steel beam
and due to shrinkage and creep of the concrete have to be taken into account. The calcu-

18
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Fig. 17. Relation between the ultimate load and the percentage of rigid non-ductile shear con-
nectors for simply supported beams with a uniformly distributed load.

lation of the elasto-plastic branch of the diagram is rather laborious. To simplify this
calculation the curved part of the diagram can safely be approximated by a straight line.
For this line the following equation can be derived:

Mu'_Me
Np=2S,=N, +

——— (N — N, .
Mfsu _ Me ( fsu e) (3 3)

For the small-scale beams this relation is also shown in Fig. 17. The figure shows that
this method leads to safe values of the ultimate load as compared to the tests.
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Fig. 18. Qualitative relation between the moment and the tensile force in the steel section with
complete interaction (absolutely rigid).
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3.2 Ultimate load of continuous beams
3.2.1 Introduction to the subject

The advantages of application of partial shear connection are so interesting that design
methods have also been developed for continuous beams. These are discussed in this
chapter. As an introduction the behaviour is illustrated with a theoretical model based
on ideal plastic material behaviour. This model is definitely not presented as an opera-
tional model for the daily engineering practice. For that purpose the procedure is too
laborious and, moreover, the basic assumptions are not necessarily sufficiently repre-
sentative. The model is intended to qualitatively describe the influence of the resis-
tance of the shear connection on the distribution of internal forces in a continuous
beam. The charm of the model is that it provides more insight into the essential struc-
tural behaviour. The theoretical model is also important to explain the results of the
tests described in chapter 4.

For use in design, two operational models, which are discussed in 3.2.3, have been
derived from the theoretical model. As a consequence of the basic assumptions of the
theoretical model, application of these operational practical methods has to be restrict-
ed to beams of which all parts satisfactorily approach ideal plastic material behaviour.
Ideal plastic material behaviour may be assumed when the shear connectors are ductile
and when the requirements for the application of the plastic theory or the elasto-plastic
theory are met.

A calculation method for beams with rigid non-ductile shear connectors, which meet
with the requirements for application of the plastic theory or the elasto-plastic theory,
is given in 3.2.4.

3.2.2 A theoretical model based on ideal-plastic material behaviour

The theoretical model is applied to a beam over three supports and two equally long
spans, as shown in Fig. 19. The load consists of a uniformly distributed load, simulated
by 4 concentrated loads per span, similar to the test-set up for the small-scale beams
described in chapter 4.

In Fig. 19 the longitudinal shear forces Sy and S; between the concrete slab and the steel
beam are indicated by arrows. S, being the longitudinal shear force between the maxi-
mum sagging moment and the end support (external shear span), and S; being the longi-
tudinal shear force between the maximum sagging moment and the central support
(internal shear span). The resistances of the shear connection are denoted by S,, and S,
for the external and the internal span respectively.

The ultimate load is dependant on the moments of resistance in the sagging and in the
hogging moment sections. The relation is given by equation (3.4)

F = 8Mfu + 3]Msu

u ] G4

In this chapter a theoretical model is presented, which allows the determination of the
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influence of the resistances of the shear connection S,, and S, on the ultimate load.
The theoretical model is based on the following assumptions.
- The materials
The reinforcement, the structural steel and the concrete are assumed to behave as
ideal plastic materials. This means that the strain-stress relations can be schematic-
ally represented as shown in Fig. 20a.
- The shear connectors
The shear connectors are assumed to be ideal ductile. As discussed before, this
means that the relation between the shear force S and the slip 6 can be schematically
represented as shown in Fig. 20b.
- Further assumptions
- tension stresses in the concrete are neglected;
« plane cross-sections of the concrete slab and the steel section remain plane after
bending;
- the influence of the vertical shear force on the moment of resistance is neglected;
- the width/thickness ratios of the parts of the steel beam are such that the effect of
local buckling need not be taken into consideration (class 1 sections).
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theoretical model.

3.2.2.1 Introduction to the presentation of the theoretical model

The simply supported beam, as already discussed in 3.1, is illustrative for the positive
moment region of a continuous beam.

The moment My, which is based on the stress distribution illustrated in Fig. 15, can be
calculated with equation (3.6). The relation between My, and N, is graphically repre-
sented in Fig. 21 (compare Fig. 6). To gain more insight, the contribution of each of the
components as a function of the resistance of the shear connection has been qualitative-
ly indicated. When Ng, =0, i.e. no shear connectors, then My, = M, = plastic moment
of the steel section. When Ng, = N,, = Af, the moment is solely supplied by the normal
forces N,, and N¢, with the internal lever z. In [5] the minimum number of shear con-
nectors is limited (50%), so that only a part of the curve is significant.

My, = N(;uz + Mpl,red (3.6)
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= Nc'.u (=Sou)

Fig. 21. Qualitative relation between N/, and Mj,.

A cantilever is illustrative for the negative moment region of a continuous beam and
will be discussed hereafter.
Fig. 22 shows the example to be discussed with the internal forces acting on the con-
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Sau = shear resistance in the
region indicated

—»Sa i Ngy=Ns-Dh =Sq

Fig. 22. Internal forces in a cantilever.

crete slab and the steel beam respectively (compare Fig. 19). At failure the reinforce-
ment will allways yield so that Ny = 4 f,.

In the extreme case that no shear connectors are applied (S,, =0) the equilibrium
condition requires that the normal force in the concrete slab in the cross-section at the
support has to be equal to zero. The tensile force in the reinforcement N has to be com-
pensated by a compressive force D,, which develops at the underside of the cross-
section of the concrete slab. The normal force NV, in the steel beam is equal to zero. So
at failure the unreduced plastic moment M, is present in the steel beam. The moment
of resistance My, is the sum of the moments in the reinforced concrete slab and the steel
beam (see equation 3.7). Fig. 23a shows the distribution of the strains and the stresses.

Msu=Nsy0+Mpl 3.7

Another extreme case occurs when so many shear connectors are applied that S,, > N,.
Then the shear connection is defined as full shear connection. If tension stresses in the
concrete are neglected D, > 0. From the equilibrium condition for the concrete slab
follows that Dy =0 (because D; = N; — S,,). The compressive force N,, in the steel
section is equal to N;. The corresponding stress distribution has already been discussed
in chapter 2 (see Fig. 14), and has also been included in Fig. 23 for comparison. It has
been assumed that N; < A4f,, which will always occur in practical cases. So the moment
Mj, can be calculated with the following equation:

Msu=Nsy + Mpl,redszsu (38)

If partial shear connection is applied and so S,, < NV, it follows from the horizontal
equilibrium of the concrete slab and the steel section that:
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The normal forces in the concrete slab and the steel section are known. The moment of
resistance M,, can be derived from the optimum stress distribution corresponding to
these normal forces, as is shown in Fig. 24. The figure also shows how this stress distri-
bution can be split up into 3 components, from which the corresponding moment can
easily be calculated with the following equation:

Msu = Néuy + DrlxyO + Mpl,red

Ns
—

Dh
-

—

'
Nau

fy

Fig. 24. Stress distribution in case of a partial shear connection.
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The relation between M, and S,, is determined by the equations (3.9), (3.10) and (3.11).
Fig. 25 qualitatively shows this relation. When the parameter on the horizontal axis is
changed, this diagram also shows the relation between My, and Dy. This relation will
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prove to be of importance in the discussion of continuous beams. It is useful to draw the
negative axis for the hogging moments M, upwards along the vertical axis. To gain
better insight, Fig. 26 qualitatively shows the contribution of the three components of
equation (3.11) as functions of the resistance of the shear connection.
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Fig. 25. The relation between M, and S,, and M,, and D,.
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Fig. 26. Components of M, when dependent on the shear capacity S,,.

Fig. 19 shows the continuous beam schematically cut at the support and at the maxi-
mum sagging moment. It would seem obvious to also cut the beam at the points of
contraflexure, which would reduce the theoretical model to the simply supported case
and the cantilever already discussed. However, it will be proved hereafter, that although
the resulting moment in the point of contraflexure is zero, the normal forces and the
moments in the steel beam and the concrete slab do not necessarily have to be zero too.
As illustrated in Fig. 13, the optimum stress distributions corresponding to Mg, and
M., only occur when the resistance of the shear connection meets both of the following
requirements. When at least one of these requirements is not met, the shear connection
is defined as partial shear connection.

Sou > Afy
Siu > Afy + As fsy
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The theoretical model discussed hereafter elaborates on the distribution of the internal
forces in the composite beam and makes it possible to determine the relation between
the ultimate load and the resistances of S, and S;, within the scope of the assumptions
described before. The concrete slab and the steel beam of each part of the shear span
shown in the Figs. 19b and c, with the relevant normal and shear forces, will be
discussed separately.

3.2.2.2 The external shear span (Fig. 19b)

This part is similar to the part of the simply supported beam already discussed. The
relation between My, and N, according to equation (3.6) is qualitatively shown in
Fig.21. As will become clear below, in a continuous beam it may not simply be assumed
that NV, is equal to S,, when S,, < 4f,. This is an important difference between simply
supported and continuous beams.

3.2.2.3 The internal shear span (Fig. 19¢)
From the condition of horizontal equilibrium of the concrete slab follows:
Ny +Ny—S;—D.=0 (3.12)

From the condition of horizontal equilibrium of the cross-section at the support
follows:

Nl —N,+D,=0 (3.13)

For comparison with the equations (3.9) and (3.10) the following expressions for N,
and D, can be derived:

Ny =8i— N, (3.14)
D.=N,—S;+ N, (3.15)

If (3.15) is compared with (3.10) it will become evident that, contrary to the cantilever,
in this beam the compressive force D; may be larger than N,. In that case apart from the
tensile force in the reinforcement, also a part of VY, is compensated by the compressive
force D,. This proves that the normal forces and therefore also the moments in the steel
beam and the concrete slab are not necessarily equal to zero at the points of contra-
flexure. It is relevant for the rest of the discussion to know which limits are valid for the
values of Ny, and D, assuming N, to be smaller than 4f,.

As tension stresses in the concrete are neglected D, > 0 is valid. Then equation (3.13)
leads to N, < N;. The normal force N, is a compressive force when D; < N, equal to
zero when D; = N; and a tensile force when D, > N,.

The theoretical maximum value of Dy is reached when the force in the steel beam N,,
is equal to a tensile force Af;. The value of Dy is also limited by the condition that,
assuming ideal plastic material behaviour, the height of the compression zone can only

26



be equal to the distance between the bottom surface of the reinforcement and the
bottom surface of the concrete slab.

I;,max 1= Af;; + Ns
xfl,max2 = behls08fc’

Fig. 27 shows characteristic stress distributions in the cross-section at the internal
support for some values of N,, and Dj.
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Mlspl,red

M'spl, red l
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Dh=0 D = Ns D' = D max 2

Fig. 27. Some characteristic stress distributions in the cross-section at the internal support.

With the equations (3.11) and (3.13) not only the relation between M, and N,, but also
the relation between M, and D; can be determined. Fig. 28 qualitatively shows these
relations. For comparison with Fig. 26, Fig. 28 also shows the contribution of the three
components to equation (3.11) when N, is a tensile force (D> N,).

Fig. 28 shows that it is physically possible for the value of M, to become smaller than
M, and even that M, becomes positive if NV,, is a large tensile force. Of course the

S {Mssu
Dn Yo \
Mpi+ Ns Yo
‘ ' _~eq (3.11)
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Fig. 28. Relation between M, and N,, and M, and D} in a continuous beam.
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design is not very practical if My, appears to be smaller than M, (point A in Fig. 28). This
leads to a practical limitation for D} and N,,. Further practical limitations of D) and N,,
may result from the following aspects:

- the shear connectors do not allow the necessary slip;

- the strain ¢, of the concrete is limited (for example 3.5%).

3.2.2.4 Calculation of the ultimate load

The calculation of the example shown in Fig. 19 would be simple when the relation be-
tween the resistances S,, and S;, were known, which would result in shear failure of the
shear connectors in both parts of the beam. In that case, Sy =S, and ;= S;,. The
values of N, and D, could then be calculated with equations (3.5) and (3.15):

Néu=S0=S0u
Dr/1=Ns_Siu+Sou

Subsequently, the values of My, and My, could be determined with the relations accord-
ing to the Figs. 21 and 28 and the ultimate load F, would follow simply from equation
(3.4). Unfortunately the required relation of S, and S, is not known, which means that
with a random chosen value of S,, and S, it is not definitely certain that both longitu-
dinal shear planes are critical.

For this reason only S;, is chosen in the theoretical model discussed below, so that
S,=S,,. With a chosen value for S;, and a known value for N; the horizontal equili-
brium condition can still be satisfied with infinite combinations. Now applies:

N, +N,—Su—D.=0 (see also 3.12) (3.16)

If in addition to the choice of S;,, also a value for D} is chosen, equation (3.16) directly
leads to a value for N.,. The value of Sy, (= N{,) follows from the equilibrium condition
for the external shear span. Now that the values of N, and D, are known, consequently
My, and M, and F, will result from equation (3.4).

Subsequently, with a fixed value of S, this can be repeated for different values of Dj.
Now, in accordance with Prager’s laws, a value of D, will occur that leads to the largest
ultimate load. This value is indicated by D;.. The corresponding values of N¢, and S, are
indicated by N, and S,.. Application of more shear connectors than required for Syu,in
the external shear span, does not lead to a higher ultimate load than with Sou. If Sy is
chosen smaller than S, then for D} = D — (S, — Sou) the ultimate load is as large as
possible with the chosen distribution of shear connectors.

From this description it follows that the determination of Dy is critical for the solution
of the problem. This reflects the essence of the theoretical model. The procedure is
schematically shown in the flow diagram in Fig. 29.

Fig. 30 shows a graphical illustration of the optimization procedure. With equation
(3.16), in which (S;, — N;) is known, the relation between M, and N, can be trans-
formed into a relation between Mp, and D, and can subsequently be combined with the
relation between My, and D;. Then, using equation (3.4) the relation between F, and D,
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My, =/ (Niy) —(3.5)
My =£(D}) —(3.11+(3.13)

(3.4)

combination N{,= D,
with SH =0 F,=f(N¢; D)
according to (3.16)

Prager

N!, and D, Sou

Fig. 29. Flow diagram of the optimization procedure

can be derived. The real ultimate load will be the maximum value of F, and is indicated
by F,. Then, with the corresponding value of the compressive force D;(= D;) from
equation (3.15), the corresponding value of N/ (= N’ ) can be determined. From the
condition S,, = N, now follows the minimum required shear resistance S, in the
external shear span.

With this optimization procedure it is possible to derive equations to determine F,, D,
and S,,.

3.2.2.5 Influence of the longitudinal shear resistance

The influence of S,y

From the optimization procedure discussed before followed that for each value of S,
and N a value of S,, = S, exists which leads to a maximum for the ultimate load (15“).
The corresponding distribution of the shear connectors is referred to as “a harmonised
distribution of shear connectors”. When S, is chosen larger than S, the ultimate load
will not become larger than F,. When the shear resistance in the external shear span is
chosen smaller than S,,, for example 0. 6Sou, N, cannot reach the optimum value N/,
and cannot exceed 0.65,,.

In this case D} follows directly from the horizontal equilibrium condition of the
concrete slab in the internal shear span, namely:

D! =0.65,, + (N, —S,.)
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Fig. 30. Graphical representation of the optimization procedure.

The graphical representation in Fig. 31 clearly shows that a smaller value of S,
compared to S, (for example Sy, = 0.6S,,) results in a value of the ultimate load
smaller than F,.

The influence of S;,

In the discussion of the theoretical model up till now a given value of S;, was assumed,
leading to F, and F,. Variation of S;, makes it possible to determine the relation be-
tween F, and S, and also between S,, and S;,. Fig. 32 qualitatively shows these rela-
tions for S,, = S, (“harmonised distribution”) and for S,, = 0.6S,, (“not-harmonised
distribution”).

For the combinations of S,, and S, in the shaded area of Fig. 32b applies that N}, < S,,,
even when S, < Af,. Fig. 32 shows how the required values of S,, and S, can be estab-
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Fsu
0,95 Fsy

Fy

Afy

Ng=Dh

—— = Squ

Fig. 32. Relation between F, and S;, and between S,, and S,

|
l Mfu
1
=]
e
|7 l
l’/ I | Msy
f i AN
| | | .
I S
T =)
AR B R—
0.6 §m!_ l — = = B N¢y
Neu=5o0u | -
|
|
.
Fu +—L

Iy

D

|
|
|
|
|

—— D}

full shear SouZ= Af
A ou= y
connection—
Siu ;Afy«i-Asfsy

T
- ——

partial shear
connection

|
|
: ®

Ns

—® Sjy

Afy +Ns

31



lished for an arbitrary value of F,, for example 0.95F,. In this example S, is assumed to
be harmonised with S,.

The minimum value of D, is equal to zero. The point on the 0.6S,, curves in Fig. 32,
where this is the case, is indicated by the letter A. The position of these points A in the
diagram for different values of Sou/fOu can easily be derived.

When D, =0 the value of N, follows directly from the horizontal equilibrium
condition of the concrete slab in the internal shear span. My, is then also known and
subsequently F, corresponding to point A can be calculated. N., = S,uleads to the value
of S, corresponding to point A.

The influence of the total number of shear connectors (Sou + Siu)

As appears from Fig. 32, an arbitrary value for S;, will result in the largest value of the
ultimate load when S,, is harmonised with §,(Seu = Sou). This does not imply that
when S,, = S, the total number of shear connectors for a given value of F, is minimal.
This is because S,, + S, is relevant for the total number of shear connectors required.
To illustrate this, Fig. 33 shows the relation between the ultimate load F, and the total
shear resistance S,, + S}, (in non-dimensional format). Contrary to Fig. 31 the lines of
Syu < Sou now intersect the line of So, = Sou-

full shear

/T connection

0.8

0,6 - 7 //
Vz
/_ e ultimate load

steel beam

0,4

0,2

|
|
|
|

L n L ! | L

0 ' 20 40 60 80 100
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?minimum 2
ZAfy * Ns

x 100 %

Fig. 33. Qualitative relation between the calculated ultimate load and the degree of shear
connection for some distributions of shear connectors.
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In the assessment of Fig. 33 it has to be kept in mind that in design standards the mini-
mum number of shear connectors is limited. In the 1985 Draft of Eurocode 4 this limit
is 50%. If the degree of shear connection is over 50% the differences in the values of the
ultimate loads for the various distributions of the ductile shear connectors are relatively
small.

The figure also includes the relation between F, and S,, + S;,, which is obtained when
the increase of the strength caused by composite action, is assumed to be directly
proportional to the degree of shear connection applied. This relation will be applied in
one of the simplified methods discussed below.

3.2.3 Design rules for beams with ductile shear connectors
3.2.3.1 Direct choice of D,

As has already been stated in 3.2.1 the theoretical model discussed there is too
laborious for the daily engineering practice. This is mainly caused by the necessary opti-
mization procedure of D] to D! The simplified method discussed here is based on the
choice of a value for D}, without further optimization. As appears from Fig. 30, an arbi-
trary choice for D, will always lead to a safe value of the ultimate load F,. An obvious
choice is D) =0. From equation (3.13) follows that this also implies N,, = N.

With fixed values of S;, and N,, N/, follows directly from the horizontal equilibrium
condition for the concrete slab in the internal shear span. When N, and D;(=0) are
known, My, and M, are determined with the equations (3.6) and (3.11). Then the value
of F, can be determined (see Fig. 19).

The value of S,, follows from N, = S,,. The relation between F, and S,, + S;, can be
found by doing this calculation several times for various values of S;,. The results of the
tests on small-scale beams described in chapter 4, are indicated by a dashed line in
Fig. 33. For comparison with the Figs. 30 and 31, Fig. 34 shows a graphical representa-
tion of the calculation procedure.

It has to be noted that a 10% reduction of the maximum ultimate load leads to a reduc-
tion of about 40% in the required shear resistance. In comparison to this reduction the
“profit”, which can be obtained by optimizing D; is negligible. Fig. 33 also shows that, in
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Fig. 34. Graphical representation of the calculation procedure when D;=0.
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this example, the saving resulting from the more complicated method only becomes
relevant when the degree of shear connection is smaller than 50%.

The previous discussion was based on an assumed value of S;,, and subsequent calcula-
tion of F, and S,,,. The relation between F, and S, + S; could be established by varying
S However, in a design calculation the dimensions of the beam and the reinforce-
ment over the supports (N,) are usually chosen and the required F, is known. In that
case the beam over three supports shown in Fig. 19, is calculated as follows.
Equation (3.4) results in:

F— 8Mp, + 3My,
/
From the assumption D; =0 follows:
Njy =N,
Mg, = Nyy + M) req = M (see Fig. 15)

When F, is known and M, has been determined, the required value of Mp, can be calcu-
lated. Equation (3.6) then leads to IV, (see Fig. 21) and subsequently the required shear
resistance S,, follows from:

Sou = Nc,u
The required shear resistance of the internal span then results from:

Siu=Sou+Ns

3.2.3.2 The interpolation method

This simplified method is based on the determination of the ultimate load of a beam
with partial shear connection by linear interpolation between the ultimate load of the
steel beam and the ultimate load of the composite beam with full shear connection,
dependent on the degree of shear connection. The corresponding relation between F;,
and S,, + S, has already been qualitatively shown in Fig. 33. For the sake of clarity this
relation is shown once more in Fig. 35 (compare Fig. 7).

Now the calculation is as follows. The ultimate load F, for full shear connection and
the corresponding number of shear connectors are calculated with the method
described in chapter 2.2. For a beam over three supports this is illustrated in Fig. 13.
Next the ultimate load F,, of the steel beam without composite action is calculated with
the plastic hinge theory.

For each value of F, smaller than F,, the required degree of shear connection can be
determined by linear interpolation (Fig. 33). Apart from the degree of shear connection
also the distribution over the separate parts of the beam has to be known. For the beam
over three supports as shown in Fig. 19, this means that apart from S,,, + S, also S,, and
S, have to be determined separately. If the relation is assumed to be the same as for a
full shear connection this will always result in safe values of the ultimate load. For the
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Fig. 35. Qualitative relation between the calculated ultimate load and the degree of shear
connection with the interpolation method.

beam over three supports with equal spans (Fig. 19) this leads to:

_ Sw _ Afy+ N
T Sou+ S 24f,+ N,

n; (see Fig. 13) 3.17)
The interpolation method is easy to use and links up well with the methods for simply
supported beams described elsewhere in this chapter.

It was described before how the number of shear connectors and the distribution over
the beam can be determined when F; is known. Vice versa, F, can be calculated when
the number of shear connectors and the distribution are known. This may not simply be
based on the total number of shear connectors in a span, as it is not known whether S,
is harmonised with S;,. To be sure it is best to do the calculation for each of the parts of
the beam separately. Then the calculation for the beam over three supports as shown in
Fig. 19 is as follows:

Sou
for the external shear span: F, = F,, + j (Fyoy— Fyp) (3.18)
y
for the internal shear span: F,=F,, + _ S (F,—F,) (3.19)
u ou Afy + As‘f;y su ou .

The smallest of the two values for F, is critical.

3.2.4 Design rules for beams with non-ductile shear connectors

Since a more subtile method is not yet available, it has to be assumed for safety, that no
slip occurs between the concrete slab and the steel beam when rigid non-ductile shear
connectors are applied. The concrete slab and the steel beam are assumed to have the
same neutral axis.
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Fig. 36. Relation between the load and the overall shear force, i.e. the required degree of shear
connection, with the simplification according to [7].

A relation between the load and the shear force (= the required degree of shear connec-
tion) is generally found as schematically shown in Fig. 36. (compare Figs. 7 and 18).
This figure shows that a safe value of the required degree of shear connection is found
with the following equation:

F,

n= 1—:— Rgy (3.20)

When the beam is unpropped the following equation may also be used:

n= (ﬂ) ng, (3.21)

Fsu"'Fg

In 3.1 a more optimal approach for simply supported beams was given. It was suggested
to use a bi-linear relation consisting of the elastic branch to F,; and a linear approxima-
tion of the curved elasto-plastic branch. The relation according to this method is
indicated by the dash-dot line in Fig. 36. The following equation belongs to the linear
approach of the elasto-plastic branch BC (compare equation 3.3):

Mu_Me

M. M ) (nfsu - ne) (322)
fsu = HMe

n=net

4 Experimental verification

For the verification of the design methods described in the chapters 2 and 3, a series of
tests on small-scale beams were carried out at TNO-IBBC. The test programme and the
test results of the simply supported beams will be discussed in 4.1. The tests on con-
tinuous beams will be discussed in 4.2.
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Also some tests on full-scale simply supported and continuous beams were carried out
at TNO-IBBC. These tests confirm the results of the tests on the small-scale beams. A
description can be found in [1] and [2].

4.1 Tests on small-scale simply supported beams
4.1.1 The test programme

A series of 14 small-scale beams were tested, the dimensions of which are given in Fig.
37. The test beams may be considered as small-scale models with a scale of about 1: 3.
All beams were subjected to an eight point load, as is schematically shown in Fig. 38.
This is a simulation of equally distributed loading conditions.
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Fig. 37. Dimensions of the small-scale beams and the shear connectors used.
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Fig. 39 shows the test set-up. The influence of the following variables was examined:
a. The type of shear connector.
- ductile shear connectors: headed studs @ 4.8 (see Fig. 37);
- rigid shear connectors: block [f1 10 (see Fig. 37).
b. The number of shear connectors.
In Table 1 the degree of shear connection is given as nSy,/Nay x 100%. In all tests
the shear connectors were uniformly distributed over the shear span (see Fig. 38).

Fig. 39. The test set-up.

Table 1. Test programme

degree of

shear
test shear connection concrete
beam connector (%) grade bond pre-load
C1 headed stud 101 K 300 prevented propped
C2 77 K 300 prevented propped
C3 49 K 300 prevented propped
C4 27,5 K 300 prevented propped
C5 26,5 K 300 not prevented propped
Cé6 100 K 300 prevented unpropped
C7 50 K 300 prevented unpropped
C8 26,5 K 300 prevented unpropped
D1 block-type 96 K 300 prevented propped
D2 77 K 300 prevented propped
D3 48 K 300 prevented propped
D4 29 K 300 prevented propped
D5 102 K 450 prevented propped
D6 30 K 450 prevented propped




c. The natural bond of the concrete slab to the steel beam.
The natural bond was prevented by applying a debonding agent, except in test beam
Cs.

d. The concrete grade.

e. Propped or unpropped construction.
The pre-loading of the unpropped beams was imitated by imposing a deflection on
the steel beam before the casting of the concrete, to such an extent that the maxi-
mum bending stress had the following value:

Zy fy 240

=20 1152 1900 N/mm?
Imax =" 1.4 mm

4.1.2 Material properties

The relevant properties of the materials used for the small-scale beams are summarized
in Table 2.

Table 2. Material properties

concrete slab steel beam shear connectors
nSmax
test S E! A Z, fy Smax Af, 100
beam (N/mm’) (kN/mm? (mm? (mm®) (N/mm?) n (KN) (%)
Cl 30 33 812 24600 292 33 7,25 101
C2 30 33 812 24600 292 25 7,25 77
C3 30 33 812 24600 292 16 7,25 49
C4 30 33 812 24600 292 9 7,25 27,5
C5 30 33 822 25000 300 9 7,25 26,5
C6 30 33 822 25000 300 34 7,25 100
C7 30 33 822 25000 300 17 7,25 50
C8 30 33 822 25000 300 9 7,25 26,5
D1 32 34 804 24400 310 10 24 96
D2 32 34 804 24400 310 8 24 77
D3 32 34 804 24400 310 5 24 48
D4 32 34 804 24400 310 3 24 29
DS 48 38 806 24400 302 10 25 102
D6 46 37 806 24400 302 3 25 30

For the concrete so-called micro-concrete was used, the composition of which was
based on a scale factor of 1:3. The strength of the concrete was determined on test
cubes of 70 x 70 x 70 mm, on the same day that the beams were tested.

The strength of the shear connectors was determined with small-scale push-out tests.
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413 Test results and conclusions

Table 3 shows a comparison between the calculated values of the moments of resis-
tance (calculated with the methods given in 2.1 and 3.1) and the maximum moments
resulting from the tests. With the exception of tests D4 and D6, the theoretical values
correspond reasonably well with the test values. The calculated values are all conserva-
tive. For the tests D4 and D6 the difference is rather large. This will be discussed later.

Table 3. Test results

degree of
shear Mu,tesl 100
test shear connection M, theory M, et M, theory
beam connector (%) (kNm) (kNm) (%)
Cl headed stud 101 15,4 17,3 112
C2 77 15,1 15,4 102
C3 49 13,0 13,6 104
C4 27,5 11,2 11,5 103
Cs5 26,5 11,5 12,4 108
C6 100 17,0 17,4 102
C7 50 13,6 15,6 114
C8 26,5 11,5 12,6 110
D1 block-type 96 16,8 17,0 101
D2 77 14,8 15,2 103
D3 48 11,0 11,8 107
D4 29 6,6 11,2 170
D5 102 17,8 17,9 100
D6 30 7,2 11,0 152

In Fig. 40 the measured load-deflection curves for the beams Cl1 to C4 inclusive are
given. This figure shows clearly that, with partial shear connection, the ultimate load is
indeed dependent on the degree of shear connection. But it also shows clearly that the
ultimate load of a beam with only a 25% shear connection is more than 66% of the ulti-
mate load of a beam with full shear connection.

In Fig. 41 the measured load-deflection curves for the beams with block-type con-
nectors are given. A comparison with Fig. 40 shows that these beams with partial shear
connection failed rather suddenly (small deformation capacity). To illustrate the
influence of slip, as discussed in chapter 1, Fig. 42 shows the load-deflection curves for
the beams C4 (bond prevented) and C5 (with natural bond).
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Fig. 42. Load-deflection curves for test beams C4 and C5.

Fig. 43 shows the measured M -x curves of the beams C6 to C8 inclusive. The Figs. 44 to
46 inclusive show the M -x curves of comparable beams, which were either propped or
unpropped.

Comparison of these curves shows that for propped beams the moment M., decreases
when a lower degree of shear connection is used. In the unpropped beams the moment
M, is practically independent of the degree of shear connection. This is caused by the
fact that the tensile force in the steel beam at moment M, is smaller in unpropped
beams due to the more favourable stress distribution in the steel beam. This also means
that the force on the shear connectors, and therefore the slip, is smaller.

Fig. 47 shows the relation between the load and the tensile force in the steel beam for
specimen C1 to C4 inclusive. The relation according to an elastic calculation for com-
plete interaction (no slip) is indicated in the figure by the dashed line.

It appears from this figure that, in the beams C3 and C4, with degrees of shear con-
nection of 49% and 27.5% respectively, the increase of the load is indeed overpropor-
tional to the increase of the tensile force in the steel beam.

For comparison the relation for test beam CS5 is also given, which is practically identical
to C4 but without prevention of the natural bond, as will be the case in practice. As slip
is prevented by bond, the tensile force N, initially increases more than in beam C4.
However, after the bond has been broken, the tensile force remains almost constant
with increasing load.

As the maximum tensile force in the steel beam is determined by the resistance of the
shear connection, the relation between the ultimate load and the number of shear con-
nectors (see Fig. 16) can also be derived from Fig. 47.
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Fig. 48 shows the relation between the load and the tensile force in the steel beam
(= load on the shear connectors) for the test beams with block-type shear connectors.
Comparison with Fig. 47 shows that, with the same degree of shear connection, the
ultimate load is smaller than the ultimate load of the test beams with headed stud
connectors. The tensile force in the test beams D1, D2 and D3 follows almost exact-
ly the qualitative relation for the absolutely rigid connection shown in Fig. 18. Only the
beam with the smallest percentage of shear connectors (30%) behaves more favourably.
The difference in behaviour is clearly shown in Fig. 49. In this figure the measured
strains and stresses in the test beams of both series with a 30% and a 50% shear connec-
tion are compared.

The discontinuity in the strains at the interface between steel and concrete is consider-
ably smaller in the test beams with block-type shear connectors than in the test beams
with headed stud connectors. This lack of slip potential will cause the optimization of
the stress distribution, as described for ductile shear connectors, to occur to a lesser
extent or not at all.

The block type shear connectors were uniformly distributed over the shear span. From
Fig. 48 the conclusion may be drawn from that the ductility of the block-type con-
nectors was apparently sufficient to redistribute the forces over the shear connectors in
such a way that at failure the forces on nearly all shear connectors were equal to their
resistances. Indeed the tensile force in the steel beam at failure appeared to be equal to
2 Smax- Considering the relatively large difference between the theoretical and the
experimental values of the maximum moments a considerable redistribution of stress
could obviously occur in the test beams with the smallest degree of shear connection
(D4 and D6, also see the line for D6 in Fig. 48).
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4.2 Tests on small-scale continuous beams

In literature quite a lot of tests on continuous beams with full shear connection are
described. These tests offer sufficient experimental evidence for the design methods
discussed in chapter 2 for beams with full shear connection. On the other hand, when
this research project was started, no useful information was available about tests on
continuous beams with partial shear connection.

The importance of the possibility to a apply partial shear connection was discussed in
chapter 1. The research was therefore focused on the development of a theoretical
model and practical design rules for that type of beams. Apart from a theoretical
approach, an experimental verification was considered necessary. So a test programme
on small-scale beams was carried out. This test programme links up with the tests on
small-scale simply supported beams as discussed in 4.1.

42.1 Test programme and material properties

The project included static loading tests up to failure on 11 beams.

The dimensions of the beams are given in Fig. 50. The dimensions of the cross-sections
are identical to those in the tests on simply supported beams as discussed in 4.1. The test
beams may be considered as models with a scale of about 1:3.

All beams were subjected to four concentrated loads per span, as is shown schematic-
ally in Fig. 51. This figure also shows the moment distribution in the elastic range and at
failure.

Fig. 52 shows the test set-up.
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Fig. 50. Dimensions of the small-scale beams and the shear connectors used.
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The influence of the following parameters was examined.

a. The number of shear connectors.
The main aim of the test programme was to verify the theoretical model for beams
with partial shear connection. The number of shear connectors in the external span
(Sou) and the number of shear connectors in the internal span (S;,) were varied.
Table 4 shows the values of S,, and S;,. In brackets the degree of shear connection is
given, defined as:

Sou Siu
—x 100% and — x 100%
Af, Af,

y y

b. Distribution of the shear connectors.

In all tests the shear connectors in the external shear span were distributed uni-
formly. In the internal shear span the number of shear connectors in the sagging
moment region and in the hogging moment region were chosen separately. The
position of the point of contraflexure is determined for the moment distribution at
failure and for full shear connection. In these two separate parts the shear connectors
are distributed uniformly. Table 4 also shows the resistances of the shear connection
in these separate parts.

| | *

plastic distribution
of moments

X

suf

..|II|IIII| |
|

| Sou | Sju sag.mom.region | Siu hog,Lmom.region
ot T T

Table 4. Test programme

distribution S, (kN)

Cross- resistance shear connection 3 3
section (KN (%)) sagging  hogging
test shear reinforce- moment moment
beam connector ment Sou Siu region region
FA 1 headed stud 254 255 (110) 391 (113) 255 136
FA 2 headed stud 254 255 (99 280,5 ( 76) 255 25,5
FA 3 headed stud 254 255 (119) 153 ( 47) 127,5 25,5
FA 4 headed stud 254 127,5 ( 49) 161,5 ( 44) 127,5 34
FA 5 headed stud 254 255 117) 0 0 0 0
FB 6 headed stud 99 255 (112) 306 (113) 255 51
FB 7 headed stud 99 255 ( 94) 272 (87) 255 17
FB 8 headed stud 99 127,5 ( 50) 144,5 ( 48) 127.5 17
SA 9 block-type 254 240 (104) 360 (105) 240 120
SA 10 block-type 254 240 (104) 168 ( 49) 120 48
SA 11 block-type 254 120 (53) 168 ( 50) 120 48
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¢. The amount of reinforcement.
Two different values were chosen for the amount of reinforcement A4,.
- A “heavy” reinforcement.
The yield strength of the reinforcement was taken roughly equal to half the yield
strength of the steel section. The cross-section is then:
A;=0.5 _
sy
Based on the specified material properties, this choice results in a value of 0.75 for
the ratio M,/ Mg,
- A “light” reinforcement.
This was taken as 0.5% of the cross-section of the concrete slab:

Ag=0.005-40-500 = 100 mm?

When this light reinforcement is applied, the ratio M,/M;s, is 0.6, based on the
specified material properties.

d. Type of shear connector.
Just as in the tests on simply supported beams, the following two types of shear con-
nectors were used:
- ductile shear connectors: @ 4.8 mm,;
- rigid shear connectors: block [1 10 mm.

Table 4 shows the test programme. The relevant measured material properties are
summarized in Table 5.

Table 5. Dimensions and material properties

concrete slab* steel beam** reinforcement*** shear connectors
test f&l:k E&’: f;' A Zpl f;/s As y Sou Siu Sma)
beam (N/mm? (kKN/mm? (N/mm?) (mm?) (mm®) (N/mm?) (mm?) (mm) number number (kN
FA 1 36 28,5 297 784 23700 440 254 69,0 30 30+16 8
FA 2 36 28,5 336 765 23000 440 254 69,0 30 30+ 3 8%
FA 3 36 28,5 280 764 23000 440 254 69,0 30 15+ 3 8¢
FA 4 36 28,5 339 764 23000 440 254 69,0 15 15+ 4 81
FA 5 36 28,5 285 764 23000 440 254 69,0 30 0 8,
FB 6 37 29,0 297 764 23000 440 99 70,5 30 30+ 6 8¢
FB 7 37 29,0 354 764 23000 440 99 70,5 30 30+ 2 8¢
FB 8 37 29,0 336 764 23000 440 99 70,5 15 15+ 2 8,
SA 9 38 28,5 300 768 23100 440 254 69,0 10 10+ 5 24(
SA10 38 28,5 305 756 22800 440 254 69,0 10 54 2 24(
SA11 38 28,5 300 758 22800 440 254 69,0 5 54 2 24(

* The intended strength of the concrete was 35 N/mm?.
** The grade of steel was specified as Fe 360, with an average yield strength of 280 N/mm?.
*#k% The position of the reinforcement is given by the distance y between the centre of gravity of the steel bean
and the centre of the reinforcement (see also Fig. 27).
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422 Calculation of the small-scale beams

Based on the geometrical data and the material properties as summarized in Fig. 50 and
Table 5, the ultimate load of the test beams was calculated with the theory described in
the chapters 2 and 3. The calculated values of the ultimate load F;, are summarized in
Table 8. Comparison of the absolute values of F,, is difficult because the material
properties of the test beams differ considerably. Therefore, as a reference for all test
beams, the value of the ultimate load F, for full shear connection was also calculated.
For the test beams with partial shear connection this value is given in brackets. The
non-dimensional values F,/F,, are mutually comparable. For the test beams with
headed stud connectors the table also includes the values of the ultimate loads F,, and
Fy, determined according to the simplified method discussed in 3.2.2. For the test
beams with partial shear connection and block type shear connectors F,, is also calcu-
lated with the theoretical medel of 3.2.1. As this method is not intended for beams with
non-ductile shear connectors, the values have been put in brackets and are only given
for comparison.

Test beams with full shear connection: FA 1, FB 6 and SA 9

A
My, = Af, (m — 1.62]@’) Fig. 11/equation (2.1)
My, = yA; foy + M) rea Fig. 14/equation (2.3)
8Mp, + 3 M, . .
F = f”f Fig. 19/equation (3.4)

Table 6. Values of M, M,, and F, for the test beams FA 1, FB 6 and SA 9

Mfu Msu Fu
test beam (kNm) (kNm) (kN)
FA 1 16,39 12,03 55,47
FB 6 15,98 9,58 52,20
SA 9 16,27 11,92 55,30

-~

= Nqy = L J<——Ns )M'spt,red
D=0
Sou>Afy Siu>Afy+ Ng ”4%

Fig. 53. Distribution of the forces in the test beams FA 1, FB 6 and SA 9.

Test beam FA 3 with Sy, = 119% and S, = 47%
The ultimate load of this beam is first calculated with the assumption that D} = 0.

Mg, = yNg + Mgp) req = 11.34 KNm equation (3.11)
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=N\ gy | TR T gy,
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_ 8Mp, + 3My,
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Fig. 54. Test beam FA 3 with D,=0.

The optimum theoretical value is reached when D, = 143.85 kN. Fig. 55 shows the
corresponding distribution of forces at failure. The shear force Sy is smaller than the re-
sistance S,,, so the shear plane in the external shear span is not critical. Striking is that a
tensile force is working in the steel section over the internal support. This will be elabo-
rated in the discussion of the test results. Based on the stress distribution shown in Fig.
55, the following values can be calculated:

M., = 7.51 kNm
M;, = 14.35 kNm
— 4578 kN

tu

%

Ney = 185,09 kN
: Ng = 111,76 kN

p—— 5 B D}, = 143,85 kN
=—— e |
F»} -] - )
M¢pl,red
Sp=185,09 kN Siy =153 kN tensmn
< 255 kN spl red

Fig. 55. Test beam FA 3 with Dy.

Test beam FA 4 with S,, = 49% and S, = 44%

A comparison of this beam with beam FA 3 is interesting since the optimum value of D!
cannot develop because the shear plane in the external shear span becomes critical.
This creates the possibility to directly calculate the maximum value of D,. For com-
parison with test beam FA 3 the calculation is first carried out with the assumption that

D, =0.
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Fig. 56. Test beams FA 4 with D, =0.

The optimum distribution of forces at failure is shown in Fig. 57. As the S,,-plane is
critical, the value of D; follows from:

Dr,1=Ns + Sou "'Siu
Based on this distribution of forces the following values can be calculated:

M,, =12.14 KNm
M;, = 14.16 KNm

F, =49.89 kN
Table 7. Determination of F, for some values of Dj.
NéuzDr;'*'Siu_Ns

D|I1 Nau:_Ns+Dr11 Mspl,red Msu=Nz;uy+Dr,1y0+Mspl,red =Dr/1+41’25 Mfu:NéuZ"—prl.rcd Fu
(kN) (kN) (kNm) (kNm) (kN) (kNm) (kN)

0 —111,76 3,63 11,34= 7,71 +3,63 41,24 9,36= 3,23+6,12 36,3
40 — 71,76 5,05 11,09=4,95+1,09+5,05 81,24 10,92= 6,21+4,71 40,2
80 — 31,76 6,44 10,67=2,19+2,04 + 6,44 121,24 12,35= 9,06+3,29 43,6
120 + 824 6,44 8,73=—0,57+2,86 + 6,44 161,24 13,65=11,78 + 1,87 45,1
160 + 48,24 5,89 6,08=—-3,33+3,52+5,89 201,24 14,79=14,34+0,45 45,05
172,68 + 60,92 5,44 495=—-4,20+3,71+5,44 Af,=213,92 15,14=15,14 45,03

T  Neu=Sou e —COR" Ns =111,76 kN
. Dy = 77,76 kN
- =
_.:> (<— L [<—> Ng =34 kN
So=Sou Mépl, red Siy=161,5 kN Mspl, red
=127,5 kN

Fig. 57. Test beam FA 4 with optimum distribution of forces; the S,,-plane is d critical.
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Test beam FA 5 with So, = 117% and S;, = 0%

As appears from Fig. 58, this distribution of shear connectors does not allow for the
assumption that D, = 0. For, when D, = 0, the equilibrium condition for the concrete
slab in the internal shear span requires that N; and N, also have to be equal to zero (N,
compression only). The possibility of this very extreme shear connection is based on
the development of D;. The sum of N, and N, is transferred over the support to the
adjacent span. For the calculation of composite floors it has been suggested, on the
basis of this predicted behaviour, to only use end anchorages in the end spans of con-
tinuous slabs. For that reason and also to be able to verify the theory in the extreme,
it has been decided to include this test beam in the test programme. The distribution
of the shear connectors, however, is far beyond the practical field of application. The
optimum distribution of forces at failure is shown in Fig. 59. As was to be expected
Sy << S,u, S0 the shear connection of the S,,-plane is strongly overdimensioned. Based
on this optimum distribution of forces the following values can be calculated:

M, = 095 kNm
My, = 11.96 kKNm
F, =32.83 kN ke

—& Ng=111,76 kN

Neu —
== =
—% («-I |<—> Dh=0
Siu=0 i! Msp(, red

Niy+Ns = Sig+Dp=0

Fig. 58. Test beam FA 5 with D;=0 is not possible.

ke

Ney=105,81kN Ng = 111,76 kN

S==— Dy, = 217,37 kN

<t— — : T
==
_>\) (<_[ |_>) Ngy =105,81 kN
t
S =105,81 kN Siu=0 % / tension

< 255 kN Mspl, red

Fig. 59. Test beam FA 5 with D/.

The normal force in the steel beam over the internal support is a large tensile force
(compare test beam FA 3).

423 Test results and conclusions

Table 9 summarizes the measured values of the ultimate load F,,. In view of the large
differences in material properties of the various beams, the non-dimensional quantity
Fu/Fs, % 100 has also been calculated for easier mutual comparison. For comparison
also the calculated results according to the theoretical model and the simplified
methods F,,[F, Feu/F, and F,[Fy, respectively, are given. With the exception of test
beam FA 2 and the test beams with block-type shear connectors, the correspondence
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between the test results and the theoretical values is satisfactory. The experimental and
theoretical results of the test beams with partial shear connection and block-type shear
connectors differ considerably. This confirms that the theoretical model is only appli-
cable if the shear connectors have sufficient deformation capacity. In test beam FA 2 a
number of studs failed prematurely due to bad welds. Welding of the small-scale stud
connectors appeared to be relatively sensitive to scatter of the material properties of the

Table 8. Calculated values of the ultimate load

calculation results*

test Sou Siu Fsu Eu Flu/Fsu Fiu Eiu
beam (%) (%) (kN) (kN) (-100%) (kN) (kN)
FA 1 110 113 55,47 55,47 100 55,47 55,47
FA 2 99 76 (60,11) 58,74 97,7 52,49 53,92
FA 3 119 47 (51,72) 45,78 88,5 36,82 36,29
FA 4 49 44 (60,48) 49,89 82,5 42,62 43,07
FA 5 117 0 (52,48) 32,83 62,6 (24,04) -
FB 6 112 113 52,20 52,20 100 52,20 52,20
FB 7 94 87 (60,60) 58,66 96,8 56,60 57,94
FB 8 50 48 (57,99) 47,28 81,5 42,57 45,78
SA 9 104 105 55,30 55,30 100 55,30 55,30
SA 10 104 49 (55,34) (48,63) (87,9) - -
SA11 53 50 (54,70) (45,52) (83,2) - -

* F,, =the theoretical ultimate load for a full shear connection
F, =the theoretical ultimate load according to the theoretical model
Fi, =the calculation ultimate load with the interpolation method (see 3.2.3)

Afy+ A fy

F,,=the ultimate load of steel beam
Fy,=the calculated ultimate load with the assumption D=0 (see 3.2.3)

=Fou+ (P;u—Fou)

Table 9. Measured ultimate loads

test results

test Sdu Siu Feu** Feu/Fsu F;eu/Flu Eau/Fiu Feu/lrdu
beam (%) (%) (kN) (-100%) (kN) (kN) (kN)
FA 1 110 113 60,00 108 1,09 1,08 1,08
FA 2% 99 76 51,79 86 0,88 0,99 0,96
FA 3 119 47 43,52 84 0,95 1,18 1,19
FA 4 49 44 50,71 84 1,02 1,19 1,18
FA 5 117 0 36,20 69 1,10 (1,50) -
FB 6 112 113 50,20 96 0,96 0,96 0,96
FB 7 94 87 58,18 96 0,99 1,03 1,00
FB 8 50 48 46,73 81 0,99 1,10 1,02
SA 9 104 105 53,59 97 0,97 0,97 0,97
SA 10 104 49 36,48 66 (0,75) - -
SA 11 53 50 38,10 70 0,84) - -

* in test beam FA 2 the studs failed prematurely
** F,.=the measured load
For other notations see Table 8.
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beam. Test beam FA 2 is one of the beams with an exceptionally high yield strength.
This situation is not representative for the practice. However, the results of test beam
FA 2 have been included for completeness. The ultimate loads calculated according to
the two simplified methods are, as was to be expected, conservative compared to the

test results.
Fig. 60 shows the load-deflection curves of the FA beams. The characteristic failure

mode is indicated in the figure by a code. Fig. 63 contains some pictures to illustrate the
failure modes. It is interesting to compare these results with the theoretical results (see
Table 10).

failure modes : @ crushing of the concrete Mgy
crushing of the concrete Dp+ failure of the shear connectors Siy

© failure of the shear connectors Sgy

@ crushing of the concrete Dy+ large deformations

5 .
N
05
R g
FA FA2 FA3 FA & FAS
T 110-113 7 99-76 119-47 7 49-44 T 17-0

i * FA2: studs failed prematurely

|

|
]
/
_ 1 ] | 4
/
/

6 | S S R R
0 10 20 30 40 50 (mm)

Fig. 60. Measured relation between load and deflection.

Test beam FA 1 (Fig. 53)

This is a beam with full shear connection. A mechanism develops with plastic hinges
at M, and M,,. Continued rotation in the plastic hinge at My, causes the upper surface
of the concrete slab to crush.

Test beam FA 3 (Fig. 55)

In this beam the shear plane S, is critical. At failure a large compressive force D, occurs
at the internal support. This is clearly illustrated in Fig. 63b, which shows that the con-
crete of the underside of the concrete slab is crushed considerably above the internal
support.

Test beam FA 4 (Fig. 57)
According to the calculation in beam FA 4 the S,,-plane is critical. In the test consider-
able slip was indeed observed at the ends of the beam. This is illustrated in Fig. 63c.
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Test beam FA 5 (Fig. 59)

This is a beam with a very extreme shear connection. As §S;, is equal to zero, the
occurrence of a large compressive force D, is essential. This indeed occurred in the test.
The deformations at failure were so large that the test had to be stopped before the
maximum load was reached.

The theoretical model is supported by the failure modes as observed in the tests. The
Figs. 61 and 62 show the load-deflection diagrams of the FB and the SA test beams. The
FB beams show the same tendencies as the comparable FA beams, whereas the test
beams with partial shear connection and block-type connectors differ. This is illustrat-
ed by a comparison of the beams SA 10 and SA 11 as shown in Fig. 62, with the beams
FA 3 and FA 4 as shown in Fig. 60. Not only is the ultimate load of the SA beams con-

Fsu

FB 6 FB 7 FB 8
024 112-13 94-87 50-48

0 10 20 30 40 50 60 70 O 10 20 30 0 10 20 30 40 50 60 70 80 S0 100
—— § (mm)

Fig. 61. Measured relation between load and deflection for test beams FB 6, FB 7 and FB 8.

1,0
/’—‘-_ _{\

0.8

0.6

Fsu
=)
~

SA 9 SA 10 SA 1

104-105 (et i
0.2 104-49 53-50

0 10 20 30 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90 100 10 120
& (mm)

Fig. 62. Measured relation between load and deflection for test beams SA 9, SA 10 and SA 11.
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siderably smaller, but the load also falls down drastically after relatively small deforma-
tions. Although the load can be increased after further deformation, this behaviour is
undesirable for real structures.

In Table 10 the measured and calculated values of M, and M;, for the test beams with
headed stud connectors are given. For completeness also the values of the ultimate load

photograph

= \

I

t Msy photograph '
|l
. |
?’ ~Z
i

photograph X

Fig. 63. [Illustration of the failure modes.
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Table 10. Measured and calculated values of My, and M,

calculation result

calculation test test result

test Eu leu - Mlsu F;u Mefu - Mesu Ej @ ,_Mﬂ
beam  (kN) (kNm) (kNm)  (kN)  (kNm) (kNm) F, My, M,
FAT 60,00 19,3 8,4 1,08

FA2 55,47 16,3 12,0 55,50* 16,8 11,4 1,00 1,03 0,99
FA3 45,78 14,3 1,5 43,52 13,9 7.9 0,95 0,97 1,09
FA4 49,89 14,2 12,1 50,71 15,1 12,1 1,02 1,06 1,00
FA 5** 32,83 12,0 0,9 36,20 12,4 3,5 1,10 0,98 -
FB 6 52,20 16,0 9,6 50,20 16,6 7,7 0,96 1,04 0,83
FB 7 58,66 17,6 11,1 58,18 18,5 10,4 0,99 1,05 0,94
FB 8 47,28 14,1 9,7 46,73 14,8 7,6 0,99 1,05 0,78

* With this load M, reaches its maximum.
** The distribution of forces at failure has not completely developed. The test was stopped
because of large deformations.

are given in this table. The sagging moments of resistance (M;,) generally seem to be
somewhat higher than predicted by the theoretical model. On the other hand the
hogging moments of resistance (M,,) are smaller. A deviation of My, is not that serious,
because the hogging moment is considerably smaller than the sagging moment and also
because the contribution of M, to the ultimate load is smaller, as follows from F, =
1/1(8 My, + 3M,,). This is confirmed by the satisfactory agreement between F,, and F,,.
The normal force in the steel beam can be derived from the strains measured in 8 cross-
sections. Fig. 64 shows the relation of the load and the normal force in the cross-
sections 1 and 4 and 8 and 5 respectively. The results are given for the beams with partial
shear connection, namely test beams FA 3, FA 4 and FA 5. The calculations of these
beams were discussed before. Asareference also the results of test beam SA 9 are given,
which has full shear connection with block-type connectors. It may be assumed that the
results of beam SA 9 give the best approach to the theoretical case of complete inter-
action. Comparison of the results shown in Fig. 64 with the calculation leads to the
following conclusions.

Test beam FA 3

With small values of F, section 4 close to the internal support (distance 130 mm), is sub-
jected to a compressive force in the steel section. When the load increases over F =~ 15
kN this compressive force becomes smaller and changes its sign when approaching the
ultimate load. This is caused by the increase of the compressive force D.. It has to be
noted that according to the calculation (see Fig. 55), the normal force in the steel beam
over the internal support is also a tensile force.

The figure shows that the theoretical value of N,, in this test beam deviates consider-
ably from the value observed in the test. It has to be kept in mind that the ultimate load
F, is not very sensitive to the magnitude of N,, = N/,, which is confirmed by Table 5.
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Test beam FA 4

In this test beam the compressive force close to the internal support increases for a
longer period than in test beam FA 3. This indicates that the compressive force D,
develops later. The tensile force in section 5 at failure is smaller than in test beam FA 3.
This indicates that the value of D; will also be smaller. This is in agreement with the
calculation. Compare Figs. 57 and 55. It has to be kept in mind that the points of meas-
urement 4 and 5 are some distance away from the internal support.

Test beam FA 5

In this test beam with an extreme moment distribution, it is essential that a compressive
force D} develops from the start. Fig. 64 shows that the normal force in the steel beam in
cross-section 4 is, also with a small load, already a tensile force. This tensile force
increases progressively with increasing load. Also in the calculation (see Fig. 59) alarge
tensile force was observed in the steel beam. So the tendency of the course of the
normal forces is in agreement with the theoretical model. For the absolute magnitude
of N,, a remark identical to the one made for test beam FA 3 is valid.
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Fig. 64. Relation between the load and the normal force in the steel beam.

5 Summary

In this publication the theoretical and experimental results of a research project on the
behaviour of composite beams with partial shear connection are presented.

Partial shear connection is an important option for the economic use of composite
beams in buildings. It enables the designer to use a smaller number of shear connectors
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in cases where it is not feasible or necessary to provide as many shear connectors as
required for full shear connection. This gives the designer the possibility to choose
between a light steel beam with relatively more shear connectors and a heavier steel
beam with fewer shear connectors. Apart from this economical comparison, partial
shear connection will always be advantageous when an oversize steel beam must be
selected from the available rolled beam size, or when deflection controls and strength
requirements are met by less than full composite action. Partial shear connection may
even be a “must” when a profiled steel sheet is used as formwork for the concrete slab.
The size and spacing of the ribs can dictate the maximum number of connectors that
can be placed.

The first contribution to the development of a theory for the ultimate strength of beams
with partial shear connection was presented by Slutter and Driscoll in 1965. They
suggested that the resistance of the cross-section of the beam can be determined on the
basis of a rigid-plastic stress distribution (rectangular stress blocks) for normal forces in
the slab and the beam equal to the total resistance of the shear connectors in the
relevant shear span. It is self-evident that the shear connectors must be able to deform
sufficiently for this stress distribution to develop.

To investigate the influence of the deformation capacity of the shear connectors a test
programme was carried out in the Netherlands by TNO-IBBC. A number of small-scale
simply supported beams with headed stud connectors as well as block-type connectors
was tested. The results were confronted with a partial connection theory. This work was
published in Dutch in 1971 [7] and [8]. The research has shown both theoretically and
experimentally that the deformation capacity of connectors has a significant influence
on the resistance of beams with partial shear connection. A simplified design method
was proposed for both ductile and rigid non-ductile connectors. The simplified method
was included in the Dutch Recommendations and also in the European Model Code.
Later a similar research programme was carried out on continuous composite beams.
The theoretical model based on rigid-plastic material behaviour, as proposed by Slutter
and Driscoll, was extended to continuous beams and verified by a series of small-scale
tests. This work was published in Dutch in 1987 [2]. Because this subject is again under
discussion during the preparation of Eurocode 4, it was decided to publish the results of
both the research programmes on simply supported beams and continuous beams in
English in this edition of Heron.

6 Notations

A cross-section area of steel beam

A cross-section area of reinforcement

Ag cross-section area of reinforcement in top of concrete slab

Ag,  cross-section area of reinforcement in bottom of concrete slab

be effective width of the concrete slab

D, compressive force in the lower part of the concrete slab at the internal support
&, strain in steel
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strain in the top fibre of the steel beam

strain in concrete

ultimate strain in concrete

strain in steel at yield strength

modulus of elasticity of steel

modulus of elasticity of concrete

compressive strength of concrete

characteristic compressive strength of concrete

yield strength of structural steel

yield strength of reinforcing steel

calculated ultimate load with the assumption that D, =0
measured ultimate load

load during construction, before steel and concrete act compositely
ultimate load calculated with the interpolation method
ultimate load of the steel beam

theoretical ultimate load for a full shear connection
ultimate load according to the theoretical model
ultimate load

total height of the composite beam

height of the concrete slab

reduced height of the concrete slab (distance between the bottom surface of the

top reinforcement and the bottom surface of the concrete slab)
span length of the composite beam

distance between upper side of the concrete slab and centre of the steel beam

maximum elastic moment of resistance (first yield in extreme fibre)
elastic moment of the steel beam

plastic moment of the steel beam

reduced plastic bending moment of the steel beam

hogging moment of resistance

hogging moment of resistance in case of a full shear connection
sagging moment of resistance

sagging moment of resistance in case of a full shear connection
moment of resistance

number of shear connectors

tensile force in the steel beam

ultimate tensile strength of the steel beam

ultimate compressive strength of the steel beam

compressive force in the concrete slab

ultimate compressive strength of the concrete slab

tensile force in the steel section belonging to the moment M,
tensile force in the steel section belonging to the moment Mg,
tensile strength of the reinforcement

steel stress
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concrete stress

longitudinal shear force

longitudinal shear force in a cantilever part

longitudinal shear resistance of a cantilever part

longitudinal shear force in an internal shear span

longitudinal shear resistance of an internal shear span

longitudinal shear force in an external shear span

longitudinal shear resistance of an external shear span

longitudinal shear resistance

longitudinal shear force in the beam

longitudinal shear resistance of the beam

height of the compressive zone of the concrete

lever arm between a tensile force in the reinforcement and a compressive force
in the steel beam (hogging moment sections)

lever arm between a tensile force in the reinforcement and a compressive force
in the lower part of the concrete slab (hogging moment sections)

lever arm between a compressive force in the concrete slab and a tensile force in
the steel beam (sagging moment sections)

pi Dlastic section modulus

VA elastic section modulus
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