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1 Abstract

A recent artificial diffusion method is briefly discussed. The method is illustrated in
one and two dimensional convection diffusion problems. It is also used in an incom-
pressible flow problem (Poiseuille flow). The incompressibility condition is imposed
both weakly (weighted formulation) and with a discrete penalty formulation; results are
compared for the Poiseuille flow. Some preliminary considerations on fluid-structure
interaction are given. Finally, the question of whether to use direct or iterative solvers
in flow problems is addressed.

2 Preface

For user friendly and efficient fluid-structure interaction modelling, it is desirable to
have both the fluid part and the structure part available in one numerical package.
Finite Element Methods are dominating structure modelling and are catching up in
fluid modelling. This paper comprises a short literature survey and some of our first
steps in implementing interaction problems in the DIANA finite element code.

3 Galerkin/least-squares finite element methods

Standard Galerkin finite element flow analysis encounters some problems:

- At high ratio of u/e (u velocity, ¢ viscosity) the boundary layer at the outflow bound-
ary may be very small, corresponding with a large solution gradient. At such a high
gradient the discretized solution field cannot approximate the exact solution field,
and oscillations (wiggles) may be induced. These wiggles are not present in the exact
solution of the continuum equations. They disappear at a small enough element size,
and this size may be extremely small in practical calculations. Consequently, a num-
erical method is needed which gives reasonable solutions at finite element size.

- The incompressibility condition may lead to overly constrained elements. The solu-
tion field “locks”, i.e. a nonphysical constant field is found. As opposed to the wiggly
solution, locking does not disappear with decreasing element size. The same problem
is encountered in the analysis of incompressible solids (rubberlike materials). To
prevent locking the Babuska-Brezzi condition should be obeyed. In other words: the
space of trial functions for velocity and pressures cannot be chosen independently.
Examples of allowable spaces can be found in textbooks on finite element methods,
Hughes [1].
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Galerkin/least-squares finite elements are useful in tackling both problems, because,

- The wiggles are suppressed, Johnson [2].

- The velocity and pressure space can be chosen freely, and in particular they can be
equal, Hughes [3].

Consider a differential operator D acting on a total column u with unknowns

Du=f (D
where fis for instance an external force. Galerkin’s method would read
(w", u") =L(w") (2)

in which (v, w) is a bi-linear inner product and L (v) is a linear form. Both the weighting
functions w" and the trial functions #" belong to a restricted space V'". The suffix &
indicates that the space V" is dependent on the mesh size 4. The Galerkin/least-squares
method adds an extra least-squares part

(w", u") + | Dw e(Du — £)dQ = L(w") 3

Q

As the space of trial functions is unaltered, the scheme is still consistent. The extra
least-square term supplies stability in such a way that wiggles are suppressed. Con-
sistency and stability together enable convergence of u" to the exact solution (thus
indicating that locking is prevented). The matrix zis chosen so that it gives optimal con-
vergence properties. In fact, it can be chosen in such a way that optimal convergence
properties of each of the eigenvalues of the system are obtained, Shakib [4]. For an
operator D with temporal derivatives, this means that the time coordinate must be trea-
ted as equivalent to the spatial coordinates, i.e. space-time finite elements should to
be used. However, choosing the solution vector u" to be continuous for the time co-
ordinate would imply that the solution early in time would also depend on the solution
afterwards. Choosing the solution to be discontinuous in time circumvents this prob-
lem. The information is now propagated by imposing the solution vector of a space-
time element weakly on the next element. Although quite different from the semi-
discrete approach, this space-time scheme degenerates into the familiar Euler back-
ward scheme for constant-in-time trial functions for the time coordinate. A finite
element approach in both space and time allows for complete usage of finite element
error estimates. This paper is concerned with time independent examples only.

Remark 1

The least-squares contribution contains second order derivatives (viscosity term). For
linear elements, these second order derivatives vanish. For higher order elements, the
second order terms may have to be incorporated.

Remark 2
A part of the least-squares term can be interpreted as adding artificial diffusion to the
standard Galerkin scheme.
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Remark 3
Note that the scheme also results from a Petrov-Galerkin method with weighting
functions

w" + Dwhr 4

4 One dimensional convection diffusion
Consider the boundary value problem

— &g+ Puy=0; 0<x<l ®)
with boundary conditions

u(0) =1, u(1)=0 6)

The unknown u represents, for instance, a temperature transported by diffusion and
convective velocity . Standard Galerkin reads

e(ul, wh) + B(ul, wh) =0 @)

forall w" € V" Here (v, w) = L]) v(x)w(x)dx. Take e = 0.01, # = 1, and V" to be the space
of 10 piecewise linear polynomials.

Because of the large element Peclet number P = Bhle =10, standard Galerkin yields
a wiggly solution (Fig. 1).

Adding the least-squares term leads to

(e + 8 (W, wh) + B(u, wh) =0 (8)

which clearly explains the expression “artificial diffusion”. The parameter 7 is chosen
to be

_h ( a’ ) _P
Tulloxl2) 4T ©)

which is nearly optimal (in the sense of giving nodally exact results), Shakib [3]. See
Fig. 2 for results with artificial diffusion.
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X

Fig. 1. Here =1 and ¢=0.01. Standard Galerkin. The exact solution is dotted.
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Fig. 2. Here f=1 and ¢=0.01. With least-squares term. The exact solution is dotted.

5 Two dimensional convection diffusion

Consider the boundary value problem

—eAu+ pVu=0 (10)
in which
ﬁl}
= 11
p [ﬂz (11)

and in which A is the two-dimensional Laplace operator. For linear elements the
Galerkin/least-squares approach gives,

e(Vul, V) + e B (Vub, Vwh) + (BVu", w") =0 (12)

The eigendirections of the matrix tff are the streamline direction f and the perpen-
dicular direction. In the streamline direction the eigenvalue is 7(87 + 3) whereas the
other eigenvalue equals 0. From this it becomes clear that the least-squares term
effectively “adds diffusion” only in the streamline direction.

6 Incompressible Navier-Stokes

The incompressible (isotherm, time independent, no body forces) Navier-Stokes equa-
tions read:

ouViu—¢e¢Au+Vp=0 (13)
subjected to the incompressibility constraint
divi=0 (14)

with # being the velocity, p the pressure, ¢ the density and divii =1 ; + iy, + U3 3. The
Galerkin/least-squares method is again useful in suppressing wiggles at high velocities.
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Furthermore, it prevents elements with equally interpolated velocities and pressures
from locking. Following Hansbo and Szepessy [5] we use the next method

Galerkin terms + t(oa" V" + Vp" 0" Vw" + Vg") =0 (15)

where w" and ¢" are the weighting functions for the velocities #" and pressure p"
respectively. A Poiseuille flow is analyzed (length 5 m, height 1 m, velocity 1 m/s at
nodes on the left edge, total fluid flow 0.75 m?/s, viscosity 0.1 Ns/m, density 1 kg/m?).
Rectangular, four-noded elements are used (equal isoparametric interpolation of veloc-
ity and pressure; mesh size 4 = 0.25 m). A plot of the flow is given for 7 once being 0 and
once being chosen according to eq. 9 with S the length of .

It can be seen in Fig. 3 that without the extra least-squares term (7 = 0) locking occurs
(all velocities are found to be 1). This is prevented by activating the least-squares term
(Fig. 4).

Fig. 3. Poiseuille flow without least-squares stabilization.

---------------------------------------------------------------------------------

Fig. 4. Poiseuille flow with least-squares stabilization.

The velocity in the middle (2.5 m, 0.5 m) of the flow is found to be 1.128 m/s, whereas it
should be 1.2 m/s. Also the total fluid flow at this section is found to be low: 0.71 m’/s
instead of 0.75 m®/s. The incompressibility condition is not exactly satisfied. This is due
to the fact that eq. 14 is only weakly imposed. Although this is not unforgivable (equi-
librium will not be exactly satisfied either as it is also imposed weakly), we implement-
ed a discrete penalty method. This scheme exactly yields 1.2 m/s for the velocity, asis to
be expected since the incompressibility condition is imposed more strongly. Artificial
diffusion of the type

T(uhvdh’dh th) (16)

is added to the discrete penalty formulation.

7 Fluid-structure interaction

Due to viscosity, a fluid particle at a solid wall will remain at the wall (no slip condition).
The displacement of fluid particle and the wall will be the same. The nodal degrees of
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freedom of solid elements are displacements. Using displacement degrees of freedom
for the fluid elements, enables automatic satisfaction of the no slip condition. It is also
important to realize that the equivalent nodal forces for the solid and fluid elements
should represent the same quantity for automatic coupling of fluid and solid elements.
In the standard Galerkin formulation the nodal forces for both types of elements do agree on

j O'ij(s‘g.ide (17)
Q

in which g;; is the Cauchy stress tensor and ¢; the linear strain tensor. However, the
extra artificial diffusion part in the fluid elements does disturb the equivalence of nodal
forces. Fortunately, the fluid velocity near a wall is so small that artificial diffusion near
a wall only plays a subordinate role in the equivalent nodal forces.

In this way fluid structure interaction is automatically accomplished (in geometrically
linear analysis). In geometrically nonlinear analysis, an Arbitrary Lagrangian-Eulerian
strategy is to be used.

8 Direct or iterative solvers

If the incompressibility condition is imposed weakly by introducing pressure degrees of
freedom, some of the stiffness matrix diagonal terms are zero and pivoting is necessary
to solve the equations. However, the least-squares operator stores small contributions
on the diagonal terms, which means that pivoting was not required in the examples we
studied. In the discrete penalty formulation, the zero diagonal terms do not show up in
the first place. Iterative solvers may be used in large three-dimensional calculations to
limit storage and cpu requirements. As the discrete penalty formulation causes an
extreme increase in the matrix condition number, which is fatal for iterative solvers, the
incompressibility condition should be imposed weakly. The small diagonal terms may
have a devastating effect on the convergence properties of such solvers. A possible
solution for this has been proposed by M. van Gijzen [6].

9  Summary

Artificial diffusion techniques are exemplified in convection-diffusion and incom-
pressible flow problems. Discrete penalty elements are fatal for iterative solvers; how-
ever, if incompressibility is weakly imposed this will be at the expense of some leakage
however. Choosing displacements for the nodal degrees of freedom in the fluid field
facilitates easy fluid-structure interaction analysis.
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