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Abstract

In this paper we present a model which determines strategies to maintain single
components of a system at minimal (discounted) costs. We focus on civil-technical
components which deteriorate gradually. Information about a component’s condition
is obtained by inspection only, except for an obvious breakdown. Repair returns the
component to the as-good-as-new condition. Decisions have to be made on when to
inspect (inspection intervals may depend on conditions found) and at which condition
level to repair. The problem is modelled as a semi-Markov decision process. A
special-purpose iteration procedure leads to an optimal strategy belonging to the
class of control-limit rules. This type of maintenance strategy is useful for practical
purposes.

We discuss some results obtained with the model and we indicate some extensions.

Keywords: Maintenance strategy, inspection, repair (replacement), optimisation,
semi-Markov decision process, deterioration process.

1 Introduction

In another paper of this issue, Van der Toorn points out that several compelling reasons
exist for developing a sound theoretical basis for maintenance planning. Especially, but
by no means exclusively, where government expenditure is involved and very large
amounts of money go into maintaining public works and where at the same time budgets
are getting tighter, careful (re)consideration of maintenance strategies are called for.
Effective and efficient maintenance management and control involve analysing and bal-
ancing maintenance costs and risks of failure related to preventive and corrective actions.
This paper deals with the development of maintenance strategies for an equipment or a
structure consisting of components which deteriorate gradually. If costs of failure (or
malfunctioning) are very high, preventive maintenance may be called for. Preventive
maintenance actions consist of inspection in order to reveal the exact working condition
of the equipment or the actual degree of deterioration if there is no continuous monitoring
of the system, and of repair or replacement if the actual condition is equal to or exceeds a
pre-defined condition level. This level is called “repair limit”. Decisions have to be made
as to the length of inspection intervals and the repair limit. The result is a maintenance
strategy which minimises total maintenance costs consisting of cost of failure, operation,
inspection and repair.
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The model we are going to present is based on a model by Tijms & Van der Duyn
Schouten (1984) and improved and extended further to meet specific requirements from
practice by Hontelez & Wijnmalen (1991), Wijnmalen (1992), and Wijnmalen & Hon-
telez (1992). The model was implemented in a PC-software package called OPTIMON
and has been in actual use by the Netherlands Department of Public Works for some time
now.

2 The model

In this section a description of the model will be given. At first, we focus on the general
model formulation for determination of condition-based strategies that minimise dis-
counted costs. In a later subsection we shall indicate how other basic maintenance con-
cepts can be derived from this model.

2.1 Assumptions

We focus on structures or equipment which perform specific functions on a permanent
basis and which consist of one or more components. One might think of bridges with
components made of steel, concrete, etc., and mechanical components, all of which may
be protected by a coating (e.g. paint). We investigate each component individually; we do
not take any economic or technical dependencies between components into account (see,
however, section 4). We do not take two-or-more-layer situations into account either in
this paper.

Processes like corrosion, carbonation, wear, and shrinkage cause a gradual deterioration
of the civil-technical components. We take these kinds of deterioration processes into
account, but not failures of electro-technical components. We assume that a component
can be observed in either one of N discrete conditions i = 1, ..., N, where i = 1 stands for
the condition “new” and i = N stands for failure or malfunction. The condition is thus
described using one single parameter. The number of conditions can be chosen at will,
but should reflect the nature of the actual deterioration process, the accuracy of visual or
technical measurement to be achieved, the required level of detail, etc. Failure may be
revealed at the next inspection with probability 1-g, (e.g. the tread of a tyre worn off) or
may be detected immediately with probability g, (e.g. a burst tyre). Even if the compo-
nent fails without being noticed before inspection, there may be a possibility of the failure
revealing itself after all: we define g, as the probability of this event per time unit. In
order to make a distinction between the two possibilities of failure detection, we define N
as the failure condition detected by inspection, N + 1 as the failure condition revealed by
itself, and F = {N, N + 1} as the state of failure.

Information on the nature and stochasticity of deterioration processes may be given as a
mathematical function G(f) which decreases or increases continuously, where G(¥) is the
condition at time ¢. G(¢) follows a Normal distribution with mean g(f) and variance b

G() = g(f) + b*U1, with U ~N(0,1)
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The mathematical definition of this function depends on the nature of the deterioration
process. Making an independence assumption and adopting discrete condition levels, we
transform G(7) to a discrete deterioration process, defining r,(f) as the probability that the
component deteriorates during ¢ units of time from a known condition i to condition
j (1 <i<j<F). We assume that a component’s condition cannot improve on its own. We
refer to Burger et al. (1995) or Hontelez & Wijnmalen (1991) for details. In Figure 1 an
example is shown where at discrete points of time the condition of a component is
assigned to the proper condition interval.

Maintenance actions are inspection, involving costs CI = 0 per inspection and taking time
TI=20, and repair (revision, replacement) resulting into the condition i=1 (“new”),
involving costs CR(i) 2 0 per repair and taking time TR(i) = 0. Costs and time of repair
can depend on the condition the component is in when repair starts. There may be a delay
between the end of inspection and the beginning of a consecutive repair: TD(i) = 0, where
i is the condition detected by inspection. Inspection reveals the exact condition with cer-
tainty; uncertainty about the actual condition starts to increase as the deterioration process
continues. We divide the (infinite) planning horizon into planning intervals of equal
length; one time unit coincides with one planning interval. Opportunities for inspection
and repair occur at discrete points of time =0, 1, 2, ... which are equi-distant. During an
inspection or repair, which take an integral number of time units, no other action can be
decided on. When no maintenance action is performed, the component works or functions
at cost CO(i) 2 0 per time unit, where i stands for the actual (but possibly unknown!)
working condition. Upon detection of failure, damage costs CF =0 are accounted for
(once per failure); per unit of time the component is in a failure state, costs
CO(N) = CO(N + 1) 2 0 will occur. All costs can be discounted at rate o= 1/(1 + r), with
0 < o < 1 and r the interest rate.
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Fig. 1. Discretisation of a continuous deterioration process (Representation of a square-root
deterioration process: e.g. carbonation).
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The problem characterised above will be modelled as a discrete, semi-Markov decision
process, where decisions have to be made as to when to inspect and at which detected con-
dition level to repair. The process is discrete because we shall intervene at specific points of
time only. The process is called Markov because the transitions between the states of the
decision process depend only on the current state where the decision is taken and on the
decision itself. The process is called semi-Markov as the time intervals between decision
moments are not of equal length due to varying inspection, delay and repair times.

The maintenance strategies which are considered here, each consisting of a scheme of
condition-based inspection intervals and a repair limit, belong to the class of control-limit
rules. These rules are simple to implement and thus of practical interest. A control-limit
rule R consists of an integer T,, indicating that repair must be performed if a condition
i 2 1, is revealed and not if a condition i with 1 <i<m, is revealed, and of integers
a(l), ..., m(m, — 1), indicating that inspection must be performed when 7(i) time units
have passed since the condition was last known to be i. Limits 7(j) with j 2 7, do not exist
as in such conditions j the decision to repair is prescribed and waiting until the next
inspection is not allowed. In the failure condition F = {N, N + 1}, repair is always manda-
tory. Tijms & Van der Duyn Schouten (1984) conjecture that under fairly general condi-
tions this class of control-limit rules will contain the overall cost-optimal strategy. Figure
2 shows an example of a control-limit repair rule, and a rule which is not of the control-
limit type; a repair in condition 3 would suggest repairing in condition 4 as well, under a
control-limit rule.

condition action condition action

5 (fail) ® repair 5 (fail) ® repair

4 ® repair 4 O no repair

3 ® repair 3 ® repair

2 @) no repair 2 O no repair

1 (new) O no repair 1 (new) O no repair
control-limit rule not a control-limit rule
(ro = 3)

Fig. 2. Example of a proper control-limit rule and of a rule which is not of the control-limit type.

We consider stationary strategies only, which means that the limit values do not depend
on actual time. No matter at what time a condition i is detected, the decision to repair or to
wait 7, time units until the next inspection remains the same, according to the strategy
scheme. The consequence is that these strategies can help setting general standards and
norms for maintenance, and can thus offer a guideline to actual maintenance. In practice,
deviations from such schemes are fairly common and should be taken into account in
day-to-day planning procedures. Such planning and control activities are, however, not
considered in this paper.
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The criterion for optimality is based on a cost function that includes all cost categories
mentioned above. We are searching for a strategy (of the control-limit type) which mini-
mises total costs. If costs are discounted, expected total discounted costs are minimised
over an infinite horizon; if costs are not discounted (ot = 1), average costs per unit of time
are minimised over an infinite horizon. In this paper we present the discounted costs
model; in Burger et al. (1995), Hontelez & Wijnmalen (1991), and Wijnmalen & Hon-
telez (1992) the undiscounted costs model can be found.

A more formal mathematical description of the model is given in the following subsection.

2.2 Model formulation

The model and solution procedure are based on a discrete, semi-Markov decision process
formulation (see, for example, Tijms (1986) for a general theoretical introduction).

The principle idea is that we do not follow the whole life-time of a component and inves-
tigate all possible sequences and occurrences of events that might take place (leading to
unmanageably large event trees), but just list all those possible states of the maintenance
process that are relevant to the decision process. In each state we consider those actions
that are allowed and which we have to decide upon and investigate the consequences of
each action (up to and including the transition to the next state). For each state the optimal
decision is determined. As the action chosen results in a transition to one of the states
listed (the list should be exhaustive), the new starting point is comparable with the
previous starting point.

The state space is defined by:

S={(,m [1<iSN+1;0<Sm<M;My=My,, =0}

where a state (i, m) corresponds to the situation of m units of time having passed (with
maximum of M, ) since the last knowledge of the component’s condition i. Note that (i, m)
is a state of the maintenance decision process and is defined by two parameters: the con-
dition parameter i of the component to be maintained and a time parameter . This defi-
nition allows us to formulate the decision process as a (semi-)Markov process.

Possible actions are denoted by:

rO: leave the component as it is,
this action is allowed in states of the set
So={(,m)|1<i<N-1; 0<m<M, -1}
a = 1: inspect the component
this action is allowed in states of the set
S ={(,m|1<i<SN-1; 1<m<M;}
2: repair (revise, replace) the component,
this action is allowed in states of the set
S, ={(,0)|2<i<N+1}
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Note that in each state at most two actions are allowed, and that the decision to repair is
allowed only after an immediately preceding inspection (with the one exception of a
failure having revealed itself without inspection: in state (N + 1,0)). The decision to repair
is mandatory if failure is detected and is not allowed in the new-condition. In order to
restrict the size of the model, quantities M, are introduced: they set a limit on the length of
the inspection intervals. Should the optimal strategy indicate to wait M, units of time, then
one would be wise to increase the value of this particular M, in order to investigate if the
computed strategy might still be improved. A particular control-limit strategy R
prescribes for each state (i, m) the value of the action a, as illustrated by the following
example.

Suppose, we have five condition levels i=1, ..., F={5,6}, and we impose a maximum
inspection interval of M, = 4 for i = 1, 2, 3, 4. The list of all relevant states in the model is:
(1,0) 2,00 (3,00 (40 (50 (6,0
(1L, 2,1 31 @D
(1,2 (22) (3.2 4.2
(1,3 (23) (3.3) 43
(14 24 G4 “4
The strategy R = (1, = 3; 7, = 4, 7, = 2), which is a control-limit rule, indicates that the
next inspection should be carried out after 4 time units if the last known conditionisi =1,
and after 2 time units if the last known condition is i = 2, and that immediate repair (boil-
ing down to replacement in our model) should be carried out if inspection reveals a condi-
tion of i = 3 or worse. This implies that for each relevant state the value of the action a is
known. In the states (1,0) . . . (1,3), (2,0), (2,1) a = 0, whereas in the states (1,4) and (2,2)
a =1, and in the states (3,0), (4,0), (5,0), (6,0) a =2. Under this particular control-limit
rule, all other states will not be attainable, and it does, therefore, not matter what value a
has in those states. If we would begin the process in a non-attainable state, then we should
take that decision that would bring the process as quickly as possible into the optimal
scheme: in state (3,1) we should take a = 2 (repair), for example.
An action a according to control-limit rule R in a state s involves the process taking one
transition step to a new state s'. There may be several candidate states, each with its own
probability value. The decision to inspect in state (1,4), for example, may reveal condi-
tion level 1, 2, 3, 4 or 5. Hence in the model, transitions are possible from state (1,4) to
states (1,0), (2,0), (3,0), (4,0), and (5,0) if we take action a = 1 in state (1,4).
We denote with a, that action a is taken according to a rule R. Transitions are defined by:
()
P{s—s'|R}: probability of a transition from state s to state s' in ¢ steps
adhering to rule R in all steps, with s, s' € §
P{s—> s'|ag}: probability of a one-step transition from state s to state s'
taking an action in s according to rule R, with s, s' € S
C,(ag): expected transition costs, made up of costs of inspection,
repair, operation and failure; the expectation is taken over all
possible transitions out of s under rule R
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T, (ag): expected transition time if action ay =1 or a, =2 is taken;
expectation taken over all possible transitions
T,(0) =1: expected transition time if action a, = 0 is taken; expectation
taken over all possible transitions.
Basic formulas can be found in the appendix. The transition probabilities are a function of
the deterioration probabilities r,(7) and the special failure detection probabilities ¢, and g,.

The problem is now to find optimum values for the parameters of the control-limit rule
R = {my; n(1), ..., m(7y— 1)} so as to minimise expected total discounted costs in the long
run:

- (1)
v, (R) = Y o Y P{s—s'|R}-C,(ay) (1)

t=0 s'eS

for each initial state s. We denote the total expected discounted costs by v(R) when start-
inginastate s € S and assuming that in this and each subsequent state we take an action
according to the rule R. The optimisation is such that, no matter which initial state we are
in, adherence to the optimal rule yields minimum costs in the long run.

Note that there is a scheme of costs: to each state pertains a cost value. Normally, one is
dealing with state (1,0) (new-condition) when comparing strategies and deciding on
maintenance concepts. If one is interfering, however, in an ongoing process, the cost
value pertaining to the current state should be taken as reference.

2.3 Solution procedure

The solution to the problem described in subsection 2.2 can be obtained using an iteration
procedure. This procedure starts with a given strategy R,,, which should be a control-limit
rule, and attempts to improve this strategy. Each iteration step consists of two substeps
which will be described below, and produces an improved strategy. The procedure ends
(after a finite and, usually, limited number of steps) when a strategy cannot be improved;
this strategy is the optimum one. For the general Markov-decision theory behind this
solution procedure, we refer to Tijms (1986).

The first substep of each iteration is concerned with setting up and then solving a set of
linear equations (2) in v(R) (see subsection 2.2). All v(R) are minimised, including
V10, (R) which represents the total expected discounted costs starting with the new-condi-
tion.

T‘\(aR)
v,(R) = C,(ay) + 20{ “P{s—s'lag} vy, (R),forall se § 2)

s'e S

Note the conformity between (1) and (2). From (2) we see that expected total discounted
costs v(R), when starting in a state s and taking action aj in that particular state, equals
the immediate expected costs C,(ay) of this action plus the expected total discounted costs
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from the subsequent state. As there may be several subsequent states which can be
reached from s when taking action a,, we have to take the probability of each possible
subsequent state into account. As we are discounting, we have to take the discount rate
and the expected transition time into account as well. We have already pointed out in the
beginning of subsection 2.2 that we are not considering the whole life-time of a compo-
nent, but rather one arbitrary transition step from each possible state in the long run.

After straightforward calculations, the above set reduces to the embedded set:

N+ 1
Vi (R) = A+ Bi-v g (ag) + S Civio(ag),fori=1, .., m—1 (3)

j=i

where A,, B; and C;; are constant under rule R. This set (3) is of considerable less size than
the set (2) and can be solved using standard methods. The values of the quantities v (R)
not appearing in the set (3) can then be derived from (2) by single-pass calculations. The
equation set (2) and the constants A,, B, and C; of (3) are specified in the appendix.

The second substep is concerned with improving the strategy R. In order to do so, a test is
performed whether or not increasing or decreasing the limit values of the rule R lead to a
test quantity value Ty(s;a) lower than the value of v (R), where

Ty (s;a) = C (a) + o S P{s—s'la} v, (R), 4)

s'e S

The definition of this test quantity is very similar to that of v(R) in (2). The difference is
that this test quantity gives the expected total discounted costs if we would take only once
another action a than the prescribed a,, in state s, and from the subsequent state s' on we
would again follow the official rule R. If the test quantity value of the alternative action is
lower than v (R) (note: we are minimising costs), the alternative action is taken because it
apparently involves less costs. In each state s where the current action is ay and where an
alternative action a is allowed, the result of the test should indicate whether or not this
alternative action leads to less costs.

More specifically, the improvement procedure consists of:

a. decreasing (if possible) the repair limit value 7,, and investigating if the test quantity
value in states (i, 0) with 2 < i< 7, when taking action a =2 is less than the value of
taking action a = 0 in these states; if so, then go to c, otherwise go to b;

b. increasing (if possible) the repair limit value 7, and investigating if the test quantity
value in states (i, 0) with 7, <i <N when taking action a = 0 is less than the value of
taking action a = 2 in these states; go to c;

c. decreasing (if possible), successively, each inspection limit value 7(i) with
1<i<m™, and investigating if the test quantity value in states (i, m) with
1 < m < 7(j) when taking action a = 1 is less than the value of taking action a =0 in
these states; if not, then go to d;
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d. increasing (if possible), successively, each inspection limit value (i) with
1<i<m™, and investigating if the test quantity value in states (i,m) with
(i) < m < M, when taking action a = 0 is less than the value of taking action a =1 in
these states.

We refer to Wijnmalen & Hontelez (1992) for details of the improvement step. If the strategy

could not be improved by changing the limit values, we have found the optimum strategy.

Otherwise, we compute the new values of v (a, ") by solving (3) in a next iteration step.

2.4 Performance indicators

In addition to information on the costs of the strategy computed, other “performance”
indicators can be computed, such as:

— expected length of the repair cycle,

— expected availability during the repair cycle,

— expected time of being available during the repair cycle,

— expected life time,

— the expected number of inspections during the repair cycle,

— probability of failure during a repair cycle,

where the repair cycle is defined as the time period between the ends of two successive
repairs (replacements).

The computations are fairly simple, but will not be shown here due to space limitations.

2.5 Modelling different maintenance concepts

Thus far we have considered the general situation of condition-based inspection intervals
and repair limits. Other well-known maintenance concepts are: condition-based mainte-
nance without inspection (“repair model” with perfect information), age- or use-based
maintenance and failure-based maintenance. These concepts can be considered as special
cases of the general model. We shall indicate how we derive appropriate model formulas.
The condition-based maintenance model without inspection can be obtained by putting
CI and TI equal to zero and M, equal to 1 for all i with 1 <i< N - 1. As a consequence,
only states (i, 0) remain and 7, is the only parameter to be optimised.

The age- or use-based maintenance model can be obtained by putting CI and 77 equal to
zero, allowing decision a = 2 in state (1,0) and fixing 7, to 1. This means that inspection has
been eliminated and repair actions are taken independently of condition. It can easily be
verified that only states (1, m) with 0 <m <M, and (i, 0) with 2<i< N+ 1 remain. The
only parameter to be optimised is 7, which is considered to be the moment of replacement.
The set of equations (3) can be reduced to an explicit analytical formula for v, (R):

A+ B

¢ ()

V1,0 (R) =

where A represents discounted operating costs (possibly including expected costs of
unnoticed failure), B represents discounted repair costs (possibly including damage
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costs), and C is a function of o and the expected length of the repair cycle. Basically, for-
mula (5) is the sum of an infinite geometrical progression with ratio C being the discount
factor for one full repair cycle and with A + B representing the expected costs of that
repair cycle discounted to the starting point of the cycle. We refer to Wijnmalen (1992).

3 Results

In this section we shall present and discuss some model results. We shall focus on a fic-

titious component of an unknown system.

The input data can be summarised as follows (for notation we refer to sections 2 and 6):

— the value of the condition parameter ranges from 0 (new) to 100 (failure)

— N =21, which implies that there are 20 operational condition levels (intervals of
equal length); the failure condition leads to failure states (21,0) (failure detection
by inspection) and (22,0) (failure detection without inspection)

- G(t) = 18V + 4 U\t (carbonation process), with ¢ expressed in years and U ~ N(0,1)

- q, = 1.0, g, = 0.0, which implies that failure reveals itself upon occurrence (i.e. at
the next time step of the model horizon)

- CI'=2000 (inspection costs)
CF = 100000 (fixed damage costs)
CR(i) = 10000 for all i (repair/replacement costs)
CO(i) = 250 per year (operating costs)

fori=1,..,N-1
CO(N) = CO(N + 1) = 5000 per year (time-dependent damage costs)

— TI=TR(i) = TD(i) = 0 for all i (durations)
15 100
s 119 9%
Q 90
o {18
17 85
3 16 " 32— ............................................. A
4 15 gl\ 720 :
2 14 5§ 65 ;
6 18 EAN gl !
7 12 52 ggl :
8 11 5§ so0l- :
9 10 03 e 2
9 9 S+ B :
10 8 $& 40F :
11 7 c% ool E
1 6 20 o ;
12 522 200 i
€2 20| i
12 4 82 5[ ‘
13 3 10 H
13 2 5 :
e <) I Py A N N A O S AR N BT AN BN AR A B B
16 141210 8 6 4 2 0 0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32
time (years) until time t (years)

next inspection

Fig. 3. Optimal condition-based inspection and repair strategy for a carbonation process (see
table 1, part 1).
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Figure 1 shows the average deterioration process of this example and its discretisation.
Table 1, part 1, shows the model results of various maintenance concepts assuming inter-
est rate 5% (discount rate o = 1/1.05 = 0.952381). “Total costs” are the total discounted
costs v, ,,(R) over an infinite horizon when starting in the condition “new”. From this
table we conclude that in this example the optimal condition-based maintenance strategy
is optimal over the other concepts considered. Figure 3 illustrates the relation between
this strategy and the (theoretical) deterioration process.

Table 1. Results pertaining to different maintenance concepts (F=failure-based, A=age-/use-
based, C=condition-based) and strategies.

repair
total exp. exp. time to  limit  inspection
discounted life time replace (cond. limits
concept costs (5%) (in years) (in years) level) (in years) comments
F 37119.90 34.3 - - -
A 17034.65 14.0 14 - - optimal
C 15738.33 22.0 - 17 13, 13,13, 12, optimal
12,11,11, 10,9,
9,8,7,6,5,4,3
C 19271.94 21.7 - 17 5,5,5,5,5,5,5, “common practice”
5,5,5,5,5,5,5,
4,3
A 17034.65 14.0 14 - - strat. optimal at r = 0%
C 15835.22 20.5 - 16 13,12, 12,12, strat. optimal at r = 0%
12,11, 11, 10,9, (N.B. costs are now
8,8,7,6,5,4 discounted at 5%)
A 12329.55 21.4 22 - - optimal, CF=0 and
C 11945.85 28.2 - 19 19,19,19,19, ¢,=¢,=0
18,18, 17, 16,
15,14, 13, 12,
11,10,8,7,5,4
A 15159.00 15.95 16 - - optimal, CF=0 and
C 13818.84 24.5 - 18 14,14, 14,14, ¢,=¢g,=0and

13,13,12,12, CO(N) =
11,10,9,8,7,6, CON + 1) = 30000
5,4,3

Based on the optimal condition-based strategy, Figure 4 shows how this strategy may be
used in practice. The length of the first inspection interval is 13 years. After 13 years,
inspection reveals working condition 15, which is worse than the theoretically expected
condition 13. From the strategy scheme we conclude that the next inspection should be
conducted after 4 years. The actual deterioration will continue. The second inspection
then reveals working condition 17, which implies a repair action according to the
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strategy. Furthermore, the uncertainty as to the actual condition after 13 years, and, again,
after 4 years is shown. The shape of the second distribution (at ¢ = 17) is due to the fact
that the condition observed at f = 13 cannot improve of its own during the following
4 years.
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1) = 13 T15) = 4 1) = 13

repair

1% inspection 2" inspection

Fig. 4. Application of the optimal condition-based inspection and repair strategy (see table 1,
part 1), with difference between assumed and actual deterioration.

As inspection costs are rather high compared to replacement costs, one might expect an
age-based maintenance strategy without inspection to be globally optimal. Other effects
(such as discounting future costs, reduced uncertainty through inspections about the
actual condition and the risk of failure) apparently outweigh this and are the cause that a
condition-based strategy with inspection is globally optimal. We also conclude from
part 2 of table 1 that a “common practice” condition-based strategy with periodic inspec-
tion intervals of equal length (except in bad conditions) is rather expensive.

When we compare the optimal strategies pertaining to interest rate 5% (part 1 of table 1)
with those from the undiscounted costs model (part 3 of table 1), we conclude that the
optimal strategies differ little or nothing at all. We have calculated the discounted costs
(at interest rate 5%) of the optimal condition-based undiscounted costs strategy, as shown
in the table; the difference is less than 1%. The higher the interest rate the larger, how-
ever, the difference (results not shown).

As for expected life-time, the optimal condition-based strategy combines lower costs with
longer expected life than the optimal age-/use-based strategy. Obviously, the failure-
based strategy combines the longest life time with the highest cost. The latter is due to the
large amount of damage costs.

Part 4 of table 1 shows the results if we take CF =0 (zero fixed damage costs) and
q,=q,=0 (failure is revealed by inspection or at replacement only). In this case of
course, the failure-based concept is not feasible. In comparison with the optimal strate-
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gies pertaining to the original data, we observe that the optimal age-/use- and condition-
based strategies suggest postponing actions: with zero fixed damage costs and relatively
low time-dependent failure costs, the occurrence of failure has become less serious. The
increase of time-dependent failure costs involves taking action sooner (as shown in part 4
of table 1).

Table 1. Total expected discounted costs (at rate 5%) if the process starts in either one of the
states shown.

state total expected state total expected
(1,0) discounted costs (1,0) discounted costs
(1,0) new 15738.33 (12,0) 20662.76
(2,0) 15804.33 (13,0 21691.01
(3,0) 15941.15 (14,0) 22830.30
(4,0) 16133.12 (15,0) 24056.53
(5,0) 16394.16 (16,0) 25306.37
(6,0) 16746.75 (17,0) 25738.33
(7,0) 17154.09 (18,0) 25738.33
(8,0) 17659.77 (19,0) 25738.33
9,0) 18271.93 (20,0) 25738.33
(10,0) 18959.15 (21,0) fail 125738.33
(11,0) 19752.31 (22,0) fail 125738.33

Table 2 shows the total expected discounted costs when starting the process in either one
of the states (7, 0) and acting according to the optimal condition-based strategy (original
data). We observe that the worse the condition is the higher the cost value, as one would
expect from the moment of replacement (which involves costs) becoming more imminent
as the condition worsens. In states (17,0)...(20,0) the costs are equal: these are the states
where the component will be replaced without distinction. In states (21,0) and (22,0) the
component will be replaced as well, but an extra charge of 100000 is made due to failure
(damage costs).

The slope of the optimum inspection strategy reflects nicely the slope of the deterioration
process, as shown in Figure 4. If the component is relatively new, the inspection intervals
are relatively long and, consequently, we end up with bad conditions as inspection result.
The decreasing worsening rate of condition in the range of relatively bad conditions is
thus reflected in the rate of decrease of inspection interval length.

4 Extensions

An obvious extension would be to consider a system of two or more components as a
whole, and take into account the effect of savings when maintenance actions on different
components are combined. One might think of set-up costs being charged only once.
Technical interdependencies are still not considered then.
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Theoretically, the general model of section 2 could be extended in a straightforward way
by defining a Cartesian product of the state space. The size of the state space, however,
would increase exponentially with the number of components, and the set of equations to
be solved in the first substep of the iteration procedure would become too large. There-
fore, we have developed a heuristic procedure based on aggregation and decomposition.
We refer to Wijnmalen & Hontelez (1993) for theoretical details.

Other extensions are:

Making forecasts of maintenance actions and costs over a finite horizon if a fixed strategy
(possibly the optimum one) was adopted. This would involve successsive multiplications
of the transition matrix. Optimising over a finite horizon, however, would require a differ-
ent model formulation. We are currently developing such a model.

Repair proper besides replacement could be modelled by defining additional decisions in
states. Transitions following from such decisions would result in a better condition but
not necessarily in the new-condition. By adding an additional state parameter one should
be able to control the number of repairs.

5 Conclusions

We have shown how a maintenance process can be modelled as a discrete, semi-Markov
decision process in order to minimise total discounted maintenance costs. We have con-
sidered single components which deteriorate independently of one another, and have
demonstrated that optimum inspection intervals and repair limits can be determined
assuming that a component’s condition is measurable. We have adopted maintenance
strategies from the class of control-limit rules, which are of practical interest. Further-
more, other maintenance concepts such as failure-based and age-/use-based maintenance
or pure repair strategies without inspection can be handled as well.

Deterioration processes can be modelled as continuous stochastic processes. They are
transformed to discrete processes as the decision process is modelled as a discrete
process. This discretisation diminishes modelling and solution complexity and increases
modelling potentiality.

With an example we have demonstrated that one can profit considerably from analysing
different strategy concepts and optimising parameter values using a model such as the
one described in this paper. In doing so, we have showed that the concept of condition-
based inspection and repair strategies can be more profitable than other concepts. As a
remark we could add, however, that their implementation usually makes more demands
upon the maintenance planner than other concepts.

Model implementation and further theoretical development continue steadily; not all pos-
sibilities of the approach have been fully explored yet. Model extensions are being inves-
tigated. We have developed the OPTIMON software package which supports the
approach and has been used by the Netherlands Department of Public Works for some
time now.
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6 Notation

CO(i)
COC(i)
CF
I
TR(i)

TD()

sors'

(1)
P{s—s'|R}

P{s— s'|ay}

Clap)
T.\'(ak)

v(R)

number of condition levels

state of failure

condition level of a component

probability of a failure revealing itself without inspection

probability of a hidden failure revealing itself after all (per unit of time)
condition at time ¢

average condition at time ¢

uncertainty parameter of the condition at time ¢

cost of one inspection

cost of one repair (replacement) when the component is in condition
level i

operating costs per unit of time in working condition i

i =N, N + 1; failure costs per unit of time

additional failure costs per failure

duration of one inspection

duration of one repair (replacement) if the component is in condition
level i

time between the end of an inspection and the beginning of the sub-
sequent repair if the component is found to be in condition level i
interest rate

discount rate

maintenance strategy of the control-limit type

condition level at which (or worse) repair is prescribed

length of inspection interval in units of time if the last known condition
level is i

number of time units passed since the condition level has become known
action indicator

maximum length of inspection interval in units of time if the last known
condition level is i

set of states the decision process can be in

a particular state

probability of a transition from state s to state s' in 7 steps if in every state
an action according to strategy R is taken

probability of a transition from state s to state s' in one step if in state s
an action according to strategy R is taken

expected transition costs if in state s an action according to strategy R is
taken

expected transition time if in state s an action according to strategy R is
taken

expected total discounted costs if the process starts in state s and strategy
R is adhered to
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T(s;a) expected total discounted costs if the process starts in state s and in this
state s an alternative action is taken instead of the action prescribed by
strategy R
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8 Appendix

The formulas of the transition probabilities are as follows:

—Ting (m+1)

1
a. P{(i,m)—=(i,m+1)|0 }= T, ) i=l, .., N-1;m=0,..M-1
iN+1

) 1) —r.
e O+ D) Zr Om), N o, M1
1 =N, (m)

b. P{ (i,m)=(N+1,0)]0 }=—

rij(m+ Tr)

c. P{(i,m)—(j,0)|1 }=1-r- (m)

_ TI')—r,
e e T O0),
1 —-rin, (m)

1

d. P{(i,m)=(i, N+ 1)1 }="

e. P{(i,0)—(1,0)|2 }=1 i=2,...,N+1
Note that in deterioration probabilities rij(m+ TI'), TI' is defined as follows:

TI = 0 if deterioration does not continue during inspection
TI if deterioration continues during inspection
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We shall give some examples of expected transition times and costs. For a complete set
of formulas we refer to Wijnmalen (1992).

f. C(i,O) (0) = CO(i) i=1..,N-1

.1 (m) - CO(j)

. = i=i i
& Cim ©) -7, (m) !

1
=
|
é
1]
<

ifTI=0
i=1,..,N-1;m=1,...,. M,

h. Cim (1) = CI

CR (i) no delay; i <N
i.Cuo(2) = |CR() +CF no delay; i = N, N + 1

o™ CR (i) no deteriation during delay; i < N
i Tim (0) =1 i=1,..,N-1,m=0,...,.M -1
K. T m (1) =TI no deterioration during inspection
LT (2) =TD(i)+TR(i) no deterioration during delay

The set of equations (2) is:

Vim = Cam(0) + 0P oyimen 0) “Vimen
+ 0Py nen0)(0)  Vinao) 1<i<m,0<m< (i)
Tio @ .
vio =Cuon(2) +a Vo m,<i<N+1
T i, miyy (D p .
Vi = Cinan () +a ’ Z P w60 (1) 'V(j,())l Si<m,

— j=1
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After reduction, we obtain the set (3), where

(i) -1

A = 2 o (I =riny 1 (k) - Ci iy (0)

k=0

2 d (I =ry, (R())) “Clinay (1)

(i) -1

+ 2 ot (rine b+ 1) =i, () - Cinynoy (2)

k=1

N+ 1
T +T oy (D .
+a CHN () + TT) - C gy (2)
ji=my
T @ "
(N+1,0) V= k+ 1
Bi= * . Z o '(riN+1(k+l)_riN+l(k))
k=1
n(i)+T m N,
(i, 7 (i) G0 ]
ra (i za h 0 .rij(ﬂ'(l)-f-TI‘)
j=m,
-1
n(i)+T iy (D .
Cij - a (i, (i) . 2 rij(ﬂ(l) + TI')

i=i
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