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A new model is developed by the author, which does not use the equations of motion but the equations
of equilibrium to describe granular materials. The numerical results show great similarities with real-
ity and can generally be described by an advanced Mohr-Coulomb model. However, many contacts

between the grains will collapse not due to shear deformation as Coulomb suggests, but due to tension
failure. These micro cracks occur always in the direction of the major principal stress, which might be a

different direction than the observed failure surface.
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Introduction

De Josselin de Jong and Verruijt (1969) have developed a method to determine the magnitude and
the direction of the contact forces between grains, by measuring the rotation of polarised light
through these grains made of photoelastic materials. In this way the local displacements and forces
could be studied. About ten years later Cundall developed a computer model, named Ball, to
describe the behaviour of granular materials. This model is based on the basic elements of these
materials, i.e. the grains themselves and their interactions. The method is validated by Cundall and
Strack (1979) by comparing force vector plots obtained from the computer program Ball with the
corresponding plots obtained from the photoelastic analysis, which was done by De Josselin de Jong
and Verruijt. One of the major problems with the model of Cundall was the computational time.
According to Ting (1989) it is not feasible to simulate more than a few tens of thousands of grains,
even with the fastest super computers currently available.

Lindhout (1992) has tried to model the cylinder test with Trubal, which is the successor of Ball. Due
to compaction problems, stability problems and the large computation time this could not be done.
Therefore a new research project has been set up to solve these problems. The idea was that if the
quasi-dynamic analysis of Cundall, which is using artificial damping, can be replaced by a
technique which is using the so called finite element method, the model will become more useful.
In the following section the modelling of granular materials with discrete elements will be
discussed. With the new model based on the equations of equilibrium firstly the behaviour of

non-cohesive materials and secondly the behaviour of cohesive materials are discussed.
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Discrete element modelling

Discrete element modelling, which is also called distinct element modelling, is in fact a type of finite
element modelling, in which every element represents one grain. The main difference is that due to
deformation some contacts between the grains can break and new contacts can be made. Because of
this the global stiffness matrix of the complete structure has to be rebuild constantly. For non-cohe-
sive materials there is also a second reason why this matrix has to be updated; the behaviour of the
contacts, both in normal as in shear direction is not linear, which means that the stiffnesses k, and k,
of these contacts have to be recalculated continuously.

If the boundary conditions of the structure (forces or displacements) are changed, then this will
effect every grain. All grains will displace in such a way that a new force equilibrium has been
created (quasi-static approach) or a new time step has been reached (dynamic approach).

Until recently only the dynamic approach has been worked out, mainly by Cundall. His model is
based on the equations of motion. For this research the quasi-static approach will be used, which is
based on the equations of equilibrium. Both models will be worked out for a two-dimensional

rectangular Cartesian (oxy)-field.

Micro modelling

The behaviour of granular structures depends on the individual grains and their interaction.

In order to be able to model this on a microscopic level, three simplifications are made.

The first is made due to the number of dimensions. Three-dimensional computer modelling con-
sumes a lot of time and memory. Because of its simplicity, two-dimensional modelling gives more
insight in the obtained results.

The second simplification is made to the grain shape. The most common one, a circle, reduces the
calculation substantially. However, circular grains will roll easier than grains with a more complex
shape. Like this, elliptical grains show a later failure than circular grains during a loading test
according to Rothenburg and Bathurst (1992).

The description of the contact behaviour between two grains contains the last simplification. This
behaviour is divided in three parts:

1. Normal deformation.

2. Shear deformation.

3. Slip or crack.

All differences between real measurements and model results have to be explained by these three
simplifications.

The relation between the normal force F, and the normal displacement # is given by:

E, = k,n 1)

For cohesive materials this stiffness in normal direction k, is constant, but for non-cohesive materi-

als this is not constant because it depends on the normal displacement.



Fig. 1. Definition of micro parameters.

The force-displacement relation of two balls in normal direction is solved by Hertz (1881).

(The definitions of the micro parameters are presented in Fig. 1.)

k, = M.Jn (2)
in which:
M = Zﬁ;G“ and n = r,+r,—d and ¥ = 2riry
3(1-vy) J T+

The grain stiffness M depends on the shear modulus G, and the Poisson’s ratio v, of the material of
the grain, but also on the average size # of both grains. The reason why this relation is not linear for
non-cohesive granular materials is that the contact surface between the grains depends on the
deformation, so during loading the geometry is not constant. This causes a non-linear stress-strain
behaviour.

The force-displacement relation in shear direction between two balls is solved by Mindlin and
Deresiewicz (1953) and verified by Deresiewicz (1958). The shear force F, is proportional to the

shear displacement s, for the elastic area.
F, = ks, (3)

The stiffness in shear direction k, can be related to the stiffness in normal direction:

k, = K.k, 4)
in which:
K, = 31 -0,
2 - Uy

This means that the relation between the stiffnesses of the normal and shear direction depends only

on the Poisson’s ratio v, of the grain material.
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Motion modelling

The modelling of granular structures can be divided in four phases:

1. Creation of the particles.

2. Calculation of the boundary conditions like wall displacements.

3. Calculation of the grains.

4. Calculation of wall forces and other desirable information.

In the model of Cundall, based on the equations of motion, all grains will be, for every time step,

one by one checked and recalculated in this phase 3.

This calculation of the grains consists of three parts:

A. With the two force-displacement relations, F, = k1 and F, = ks, all forces on one particular grain
are calculated.

B. With these forces and the equations of motion (second law of Newton), the acceleration of the
grain is determined:

SE- i ®)

in which:
m  =mass of a grain
X = acceleration of a grain or second derivative of its place

For the next time step, the new position of the grain is found with two integration steps:
> 1 2,
3= a”( ZF)dt dt ©)

This integration is not very stable and therefore small time steps and damping are necessary.
Extra calculation time and less accuracy are the result of this.
C. All contacts of the grain are checked for:
I. Plastic deformation (slip or crack).
if |[F|> fgoFa+F, then [F| = f, F, (7)
in which:
fep = tang, and F, = cui’z or F = ¢,n1;
II. Contact breaking.
if — F, > F, then break contact (8)
III. Contact making.
if n > 0 then make contact 9)
With the new positions the new forces for part A. can be calculated. In this way, for every time step,
all contact forces and grain positions are determined. The computer models Ball, Trubal and prc
(particle flow code) of Itasca Minneapolis are based on this method.

Equilibrium modelling
The new model is based on the equations of equilibrium. Only part B in which the displacements of

the grains are calculated is different from the motion modelling:



A. The first part is equal to the motion model.

B. In the new approach, equilibrium equations are used instead of equations of motion:
SE =0 MF =0 YM=o0 (10)

By disregarding time, dynamic problems like explosions, vibrations and quakes can not be

modelled. The three equations form a 3 x 3 matrix:

Ne/g Nesg Ne/g Nesg
Z—czkn—szks z(ks—k“)sc Zsrks Ax chn+st
k=1 k=1 k=1 k=1
LIv /g N/ Neg
Z(ks~k,,)sc Z«szkn~czks E—CVkS Ay ZSF"-!- cF, (11)
k=1 k=1 k=1 k=1
Ne/g Nesg Nesg Nesg
z srk, Z —crk, 2 k|| A 2 —rF,
Lk=1 k=1 k=1 JL 1l J
in which:

1, = number of contacts per grain.

s =sin(a)
¢ =cos(a)
r  =radius of the grain

All forces and stiffnesses on one particular grain are placed in this matrix. The displacements of
the grains can directly be calculated with Gauss elimination.

C. The third part is equal to the motion model.

Although the equilibrium position is directly calculated, the displacement of a grain will effect its
neighbouring grains. Therefore several iterations through the whole structure are necessary to find
the total equilibrium state of the grain structure. The computer model Grain, written by the author,
is based on this method.

Because the grains can gain and loose contacts during the simulation not only the calculation of the
grains but also the book-keeping of the grain and contact data is important. It is time consuming to
check every time all possible grain contacts. To avoid this, each grain has a list of the contacts
between its neighbours and also a list of the grains which are nearby but not connected. These are
called friends. After the grains are sprinkled between several walls, the entire group of grains is
considered as a village surrounded by city walls. Every grain has to check the complete village in
order to make its personal list of friends. This has to be done only once after the creation of the
grains and every time a grain has been displaced outside his defined friend-area. This happens only
occasionally. In this way only the friends have to be checked for contact-making and the neighbours
for contact-breaking.

143



144

Motion versus equilibrium

The main advantage of the motion model is that it can handle dynamic problems, although this is
most of the times not necessary. The main advantage of the equilibrium model is the speed.

When this research was started in 1993, one of the most used motion models was New Trubal (NTB)
from Cundall. The final results for both models were found to be equal, although GRAIN was much
faster. For each iteration step of GraiN, 4000 iteration steps were necessary with NTB. Because NTB was
not able to handle certain characteristic tests and needed to much calculation time, only GRAIN is
used to do the rest of the numerical simulations in this paper.

Two years later (February 1995) a new version called Particle Flow Code (prc) was released by
Itasca. It had two major improvements:

1. prc could, although in a complicated way, use stress controlled walls.

2. The calculation speed had increased a lot.

Although the models are based on various basic principles, the final results are quite similar.

The only difference is now that prc (motion) uses fifty times more iteration steps than GRAIN

(equilibrium).

Non-cohesive granular materials

A discrete element model is a perfect tool for measuring the influence of a number of specific micro
parameters (like the relative density, lateral pressure or the internal friction) on the macro
behaviour of non-cohesive granular materials.

Especially, fundamental issues like the failure mechanism can be analysed.

Failure mechanism

In Fig. 2 a sample is failing during a biaxial test. The question is if this happens because of the
slipping of the grains or the rolling of the grains or maybe a combination of both. Therefore the
number of contacts per volume of this sample is measured. During loading the number of axial
(vertical) contacts increases a little bit, but the number of lateral (horizontal) contacts decreases
strongly. This can be seen in Fig. 3. This decrease of horizontal contacts is a sign of the failure
mechanism of granular materials. In horizontal direction so many contacts are lost that the grains

can roll away.

This failure behaviour becomes clearer if we look at the influence of the internal friction.
This internal friction between the grains f1l is one of the most important micro parameters. In Fig.
4 two macro parameters are strongly influenced by an increase of the internal friction, namely the

strength of the whole structure is increasing, and the dilatancy is increasing as well.
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On the contrary, a structure with infinite friction can collapse only by the roll

Triangle contact groups do not role, but quadrangular and more angular contact groups are able to

deform despite the infinite friction.
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Fig. 4. Biaxial test: influence of the internal friction.

These rolling groups will act like rolling wedges, causing an increase of the pore volume and a
decrease of the number of contacts in the shear bands. This dilatancy will be largest for infinite

friction, because all wedges will be mobilised, and not one will fail because of shearing.

No rolling Rolling without shear Dilatancy and contact breaking

2280,

[ %

Fig. 5. Failure on micro scale.
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Also another conclusion can be drawn from these results. Even if the friction is infinite, the strength
will not be infinite. This means that for structures with a low friction the strength is mainly
determined by the friction, but for a high friction the strength is mainly defined by the rolling of the
grains.

Other tests show that if the rotation of the grains is fixed in combination with an infinite friction,
then an infinite strength is found, which is in agreement with the previous theory. So, the rotation of
the grains is very important in the discrete element modelling.

It can be concluded that non-cohesive granular materials fail because of both shearing and rolling.

Only the rolling of the grains is causing dilatancy and contact breaking.

Continuum behaviour of non-cohesive materials
Generally all tests with GRAIN can be described with an advanced Mohr-Coulomb model. The
stiffness behaviour of non-cohesive materials has been solved by Van Baars (1995 and 1996).

The Young’s modulus is not constant but depends on the stress.

o, \P
Eso = Eu ) (12)

[ENIN}

- O-requ ) v
Erer = (3(1-%)””v K+ 1

1
F=3
_(o+0y)
Oy = >
Kv=3l—v“
2-v,
L n,
c/v T - V

This theoretical solution is in good agreement with the numerical results of the Young’s modulus
found by Grain.

Shear band development

Very interesting is the direction of the shear band. Fig. 6 shows the grain displacements of two
different biaxial tests from 5% to 10% deformation. The sample on the right had no wall friction, so
the weakest areas were near the top and the bottom. Only there the grains bend away at failure.

The sample on the left has its weakest point in the middle because of the reinforcement at the walls
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caused by the shear stresses. A clear shear band is formed in the centre with a direction of

6 =52° +2°. This is the same as suggested by the advanced Mohr-Coulomb theory, namely

- o (13)
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Fig. 6. Biaxial test: displacements of the grains.

Simple shear test

The failure mechanism in the simple shear test of Roscoe (1970) is still surrounded by questions.
Therefore this test is also modelled. Three different failure mechanisms have beeen suggested:
~ Horizontal shearing in the analogy to the shear law of Coulomb.

- Vertical shearing according to De Josselin de Jong (1992).

- Lateral failure according to the author.
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Fig. 7. Failure mechanisms.

If failure occurs by exceeding of the maximum shear stress in a certain direction, which is suggested
by the Coulomb criterion, then only the stress and deformation fields of the horizontal and vertical
failure mechanisms are both static and kinematic admitted. In that case, for the horizontal

mechanism the horizontal stress during failure has to be:

_ Lesin(¢")

XX 14
1-sin’(¢’) (14)
and for the vertical mechanism:
s 200
_ 1—sm(¢)6 (15)

T 14 sinX¢) "

When the horizontal stress does not meet these particular values by any (artificial) way, no failure
can occur according to the Coulomb criterion. This can not be the case.

If failure takes place by breaking of contacts in the direction of the minor principal stress, because
tension forces can not be absorbed on micro level, then only lateral failure can occur. This means
also that the shear direction can not be obtained from the Coulomb line. This statement can easily be
verified with GraN by comparing the average rotation of the grains ¥, with the rotation of the
vertical walls ¥. The ratio of these rotations during failure is for the horizontal, vertical and lateral
mechanism respectively equal to:

% Z 000r1.0 or 0.5 respectivel 14
y p y

The dashed line of Fig. 8 shows that the diagonal failure mechanism is the only correct one

(ﬁ = 0.5) . During failure up to 25% of the contacts are broken, which correspond with this
mZe,chanism as well.

The results of the simple shear tests with infinite wall friction presented in Fig. 8 can be predicted
quite accurately by the results of biaxial tests using the advanced Mohr-Coulomb model, although
the shear modulus is a little bit too small.
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Fig. 8. Simple shear: Test I: 6,, = 0,, =1 bar (a) and Test II: 6,, =1 bar, o,, = 2 bar (b).

According to the advanced Mohr-Coulomb theory, the major principal direction 8 during a test
should be similar for the (inside) stresses and strains. This behaviour is also found for GRAIN for both
simple shear tests and is presented in the Fig. 9. The theoretical major principal direction during
failure is solved by:

1 (O-yy - o-xx)

6. —o.) (16)

€052 = ~ G (3) (= 0r0)

So:

B = 45° for simple shear I

B = 64° for simple shear II
This so called coaxiality suggest that the rolling of the grains during failure will be on average in the
direction of the minor principal stress. In other words, the grains escape in the direction of the low-

est resistance.
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Fig. 9. Principal directions of stress and strain: Test I (a) and Test II (b).
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Cohesive granular materials

Default parameters

In order to gain some insight in the failure mechanism and the moment of failure of cohesive
granular materials, several biaxial tests are modelled in Grain. The default micro parameters are
chosen to be representative for sandstone with a dense compaction.

The linear spring constant is k, = 1 MN/m. To obtain a sample with a high density this friction
between two grains will be temporarily decreased to zero f Igg = 0.0 before cementation. The wall
friction is for all tests zero f,, = 0. The cohesion ¢, is unknown and is chosen to be 100 MPa in
order to give the sample more or less the same strength as Castlegate sandstone (USA).

The average grain size is 7 = 0.1 mm. The default confining pressure is chosen to be ¢, = 10 bar =
1 MPa. The total deformation of 2% is reached in half an hour on a normal personal computer with
500 load steps: %_I = 40x107°. Twenty iterations per loading step were sufficient to iterate
accurately enough to the equilibrium state. The depth of the sample is chosen to be equal to the
average diameter of the grain (D = d = 27) to be able to calculate the stresses.

Continuum modelling
Fig. 10 presents the rotations of the grains in a sample of 4000 grains at failure. Before the test all
radial lines on the grains were pointing upwards. These lines indicate that only the broken grains

within the shear band are rolling.

Fig. 10. Failure surface during a biaxial test on 4000 grains.

151



152

Several biaxial tests like this are done on samples with identical micro parameters but with different
shapes of the sample and different grain size distributions. According to Fig. 11 the stiffness and the
strength of the samples were all found to be quite similar. The percentage of the broken contacts is

reflected by the dashed line in the same figure.

(e}
cs_; and nc,broken [%]

0 0.005 0.01 0.015 0.02
Fig. 11. Biaxial test: different shapes.

Compression tests, confined biaxial tests and unconfined biaxial tests all give comparable results for
the Young’s modules and the Poisson’s ratio. These parameters are listed in the Table 1. At the
beginning of a test the measured values are a little bit lower than just before failure, because during
the compression of a sample extra (non cohesive) contacts are formed. These contacts increase the

total stiffness of the sample.

Table 1. Young's modules and Poisson’s ratio.

Test E (GPa) v
Compression 3.9-4.2 0.11-0.13
Confined Biaxial 3.8-4.2 0.04-0.19
Unconfined Biaxial 3.9-4.2 -

Van Baars (1995) shows analytically that both the stiffness behaviour and the strength behaviour of
cohesive granular materials can be described by the Mohr-Coulomb model. The Young’s modulus
of cohesive granular materials depends only on the Poisson’s ratio, the number of contacts per

volume, the normal spring constant and the average grain size:

E k., . . a’n,
e 716/\,2—& in which ey = =5 = 1.80 17)



So,

6
E=(1-01)x180x——0 - 405 GPa (18)
2x2x2210

Which is a nice analytical prediction.

Very interesting is the fact that the strength of a sample is hardly influenced by the grain size distri-
bution. Distribution A contains more small grains than large grains, while the distribution B is
linear. For both grain size distributions the moment of failure of the samples can be accurately
described by the Mohr-Coulomb parameters c”and ¢’ (Table 2). The different distributions cause
only a very small difference in the strength of the samples. This means that although the formation
of micro cracks depends on the average of the contact forces and the deviation of these forces, both
the average force and its deviation do not depend on the distribution of the grain sizes.

Table 2. Cohesion and angle of internal friction.

Type ¢’ ¢’
A 9.3 MPa 22°
B 9.6 MPa 22°

Van Baars (1995) shows analytically that this is true. The angle of internal friction is constant and
does not depend on the contact force distribution. The cohesion depends only on the average

strength of a single (lateral) contact and on the number of contacts per micro volume:

VRS
sing” = 3
(19)
-3
CyNeyy . d 1,
¢ = ey with Neyy =
16,2 tov
So, in this case:
¢’ = 19.5°
(19)

_ 100 MPax 1.80
16./2

The deviation with the numerical angle of internal friction and cohesion of Table 2 is not too large.

= 8.0 MPa

Contact forces and failure mechanism
The strength and the elasticity of the granular structure could not be solved without the analytical

solution for the average normal and shear forces related to biaxial tests:
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I, =Fl (cz + 9—152)
n,o n 03
(20)
Fl, = F,ﬂ(l ~Sl)cs

in which

&
<

=2
= do
or: Fl =222
ncd nc/v

These average normal and shear forces (dashed lines in the next figures) in relation to the angle
between the contact and the horizontal axis, are in good agreement with the average forces found
by simulating a sandstone sample of 1000 grains at 10 MPa loading pressure with Grain.

The radar plot of these forces on the right shows that the measured normal forces are almost
identical to the analytical solution. The average normal force will always be positive (pressure).
Still it is found that failure occurs always due to local tension failure. This means that not only the
average value of the normal force is important, but also the deviation of the forces.

The normal forces are, especially for the horizontal contacts, very small. During loading the
deviation of the forces will increase, while the average normal force of the horizontal contacts
remains constant. Thus, these contacts will collapse first due to tension failure. This means that

mainly axial (vertical) micro cracks are expected, since the cracks are perpendicular to the broken
contacts.
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Fig. 12. Biaxial test: average normal and shear forces.



One of the most interesting phenomena of the failure of a sandstone sample is the nucleation and

growth of a crack. Fig. 13 shows the failure mechanism of a cohesive granular material in detail.

If cemented contacts are broken then a thick line perpendicular on the contact is drawn. The hori-

zontal walls are also represented by thick lines, the rubber vertical membranes are not drawn.
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Fig. 13. Failure mechanism of a cohesive granular material.

The failure mechanism of a cohesive granular material can be divided into three phases:

Phase A. During loading more and more contact forces become negative as predicted in the

previous paragraph. They break because of local tension failure and not because of shear

failure as Coulomb suggests.

Phase B. A crack weakens the surrounding area and increases the probability of a new crack in this

area. In this way a failure surface is formed. Although this surface is diagonal, the micro

cracks are mainly vertical, which means that mainly horizontal contacts are broken.

This phenomenon is also found for concrete and mortar by Stroeven (1973). Failure was

caused for these materials by axial tensile (cleavage) cracks.

Phase C. Grains with broken contacts act as rollers between the lower and upper part of the

sample. The resistant vertical force becomes less and less.

Three point bend test

A familliar test to measure the strength of a concrete beam is the three point bend test. Therefore

39.8 cm x

102.5 cm x 2.00 cm). Before failure the beam on the left shows in Fig. 14 a very clear arch of

this test is also simulated with a small beam containing a thousand grains (h x I x d

compressive forces from the left support upwards to the vertical load and downwards to the right

support. The underside of the beam has mainly horizontal tensile forces with small vertical

forces, which is in analogy with the forming of the small perpendicular tensile forces in

compressive

the biaxial test. In other words, the results are as expected.

The crack in the beam on the right formed during failure, starts at the bottom of the beam and

grows from weaker area to weaker area, which are the larger pores. A crack can also be dead ending
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if the area above the crack is too strong. In that case another crack parallel to the former crack will
appear and extend the total failure surface. The micro cracks are indeed in the direction of the major

principal stress.
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Fig. 14. Concrete beam before (a) and after (b) failure.

Conclusions

Models based on equilibrium will give the same results for quasi-static problems as models based
on motion. Equilibrium models will iterate faster but can not be used for dynamical problems like

the models based on motion. The results from the discrete element models show in a qualitative
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way a good similarity with real tests on granular materials. These results can be described with an
advanced Mohr-Coulomb model. The Coulomb line describes the moment of failure of a granular
material quite well, although the present approach suggests that failure will not occur due to shear
failure but due to tensile failure on a microscopic level, which is causing tension cracks in axial

direction.
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