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1. Introduction

In linear geodynamics the Stoneley model for the transmission of Rayleigh waves in the earth
consists of an incompressible, isotropic elastic half-space X7 > 0 in which the shear modulus u
increases linearly with increasing depth Xj according to the equation u = ug + mXy, with ggand m
are positive constants, (Stoneley (1934)).

In soil mechanics a Gibson soil is a Stoneley elastic half-space with zero shear modulus at the
upper surface X; =0, so that .yg =0and p= mX;

In his famous 1967-paper Gibson showed that the upper surface of this elastic deep stratum reacts
under static normal loading like a uniform bed of springs, a so-called Winkler foundation
(Gibson (1967)). Any point of the upper-surface X; = 0 settles an amount w (X1 = 0), directly
proportional to the local intensity g(X; = 0) of applied normal stress according to the law w(X; =
0) = q(X1 = 0)/(2m); outside the loaded area the upper-surface does not settle. It has been noticed
(Kruijtzer (1976)) that the induced deformation at the locations X7 > 0 is irrotational and the
settlement w(X1) of a point at the level X; > 0 is directly proportional to the all-round pressure
—p(X1) at that point according to w(X7) = p(X1)/(2m). These settlements at the levels X; >0
decrease with increasing horizontal or vertical distances from the loaded surface area.

In the appendix 1 we give some results of the linearised elastodynamics of the Stoneley half-
space. One of these results concerns us particularly. When we analyse a group of plane harmonic
waves of wavelength A = 27/ k travelling through a Gibson half-space in a horizontal direction
with velocity c, it is found that there exist irrotational Rayleigh waves with wave velocity
c=((pg +2m)/ (prc))l/2 in which p is the mass density and g is the constant acceleration due to
gravity. These irrotational waves are mathematically similar to the (irrotational) gravitational
waves in deep water with ¢ = (g/ 01 12,
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In this paper we focus our attention to the geometrically non-linear theory of elasticity of a
Gibson half-space originally being subjected to a hydrostatic stress distribution.

We choose the constitutive equation of a Varga material, which correlates the actual (Cauchy)
stress ¢ and the so-called left stretch tensor V (Varga (1966)). In fact, we combine the ideas of
Stoneley, Gibson and Varga. Therefore we call our medium a Stoneley-Gibson-Varga stratum.

Governing equations

Preliminaries and notations

Let there be given at fixed time ¢ = 0 an incompressible, isotropic, unstrained elastic body B which
occupies the lower half-space and possesses a volume V, a plane upper boundary S and a
boundary S.. atinfinity. At this time the body is at a state of rest. The density of the body is
assumed uniformly distributed in V. The rigidity (the shear modulus) of the body is assumed to
increase linearly with depth from zero at the upper boundary S. It is assumed that in the body
acts a hydrostatic stress distribution due to a constant gravity. Such a stress distribution does not
affect the unstrained state of the body since the body is incompressible and isotropic. By virtue of
the conditions of equilibrium this initial all round pressure distribution increases linearly with
depth from zero on S. )

From a certain instant of time the body is forced to undergo a finite deformation. The body is
deformed into the body B’ with volume V’, upper boundary S’ and boundary S’ at infinity.

It will appear to be convenient to use the Lagrangian (material) description as well as the
Eulerian (spatial) description of the deformation.

The position of a generic particle P of the unstrained body B at a state of rest is identified by the
Cartesian co-ordinates X1, Xp, X3 or its radius vector X = (X1, X, X3).

The origin O of this right-handed co-ordinate system lies on S, the X1-axis being directed
downwards.

The position of the same particle P but now of the deformed body B’ is given by the Cartesian co-
ordinates x1, Xy, x3 or its radius vector x = (x1, ¥, x3). The origin o of this right-handed co-ordinate
system coincides with O, the x;-axis directed downwards.

The motion of the material points P is expressed by a one-parameter family of mappings. In the
Lagrangian description:

; = ;()_(rt)r Xi= xi(XerZIXSIt) (21)
or, alternatively, in the Eulerian description:

X = X8, X;=Xx1,%,%3,1) 22

where function and function values are denoted by the same symbols. The functions are
supposed to be sufficiently continuously differentiable as needful with respect to their
arguments. In our analysis we follow Malvern (1969).



In the Lagrangian description (2.1) the velocity v = v(X,#) and the acceleration a = a(X, ) of a
particle P are defined by

T TRp = (ax(x 1) E dx(X,5) (2.3a)
and
e v(X t))_ - d? 2(:2( £) (2.3b)

where d/dt denotes the material time derivative, i.e., the partial time derivative with X held
constant.

Substitution of (2.2) in (2.3) yields the Eulerian description of v = v(x,) and a = a(x,t) at some
point x, the current position of the points P.

In rectangular Cartesians:

Vi = (X1, X9, X3,1) (2.4a)
and

ay = ap(x1,%p,x3,1t) (2.4b)
with

a, = Qg—k— +v sx—k sum on m. (2.4¢)

In (2.4c) d/ ot represents the (local) time derivative with x,, (m = 1,2,3) held constant.

In general, whenever the same letter subscript occurs twice in a term, that subscript is to be given
all possible values and the results added together. 3
The components of the material deformation gradient F and the spatial deformation gradient F!
are defined by, respectively,

- = = ox
dx=F.dX , dx, = an -dx,, (2.5a)
and
dX=F".dx, dx, = Zn. gy, (2.5b)
axk

The material deformation gradient F with elements oxy/9X,, and the spatial deformation gradient



F~! with elements dX}/dx,, are related to each other by FF1=1or FL.F=1, with1 as the unit
tensor. These two relationships are expressed by two sets of nine simultaneous equations,

an aXm an . Z)x_m

=5, , e Fm_g 25
X, ox U o, ox, M 259
where §; are the Cartesian components of the unit tensor: &; =1 if k =i, §; = 0if k # i. These
relations (2.5¢) play an important role in our further analysis. The condition of incompressibility
of the body requires that

= =-1
det(F)=det(F )=1 (2.6a)
or, alternatively,

M _ (2.6b)
ax k

The polar decomposition theorem (Malvern (1969), p. 178) establishes the unique representation
of the material deformation gradient tensor by F =R - U = V - R, in which I_{_is a proper
orthogonal tensor representing the local rigid rotation of the material, and l_{_and Vare symmetric
tensors representing the pure deformation of the body material. The tensor U is known as the
right stretch tensor. The tensor V is called the left stretch tensor.

Thus,
F=R-U=V R (2.7a)
In Cartesian components we may write
9% Vi Ry =Ry U (2.7b)
BXm ke ) {m k"~ m

Equations of motion B

The physical components of the actual stress G at a point x in the deformed body B’ (the Cauchy
stress, the Eulerian stress or the “true” stress) are denoted by oj. The component oy represents
the component in the direction of xx of the traction on a material surface in the deformed body B’
with a normal into the direction of x;. The spatial or Eulerian equations of motion are with respect

to deformed body
Lo
— Y 4b.=pa.
o, +b ;=P

,in VvV’ (2.8)

jj = Oji



where by = pg, bp =0, b3 = 0 are the components of the constant body force. Here p is the uniform
and constant mass density and g is the uniform and constant acceleration due to gravity.

Constitutive equation

In this paper a possibly rather unknown formulation of the stress-strain relationship of an
incompressible, isotropic material will be used. In the appendix 2 a formal justification of this
relationship is presented. A more or less intuitive derivation of the relationship can be given as
follows.

R.S. Rivlin (1948) considered an incompressible, isotropic elastic solid. By use of the concept of
the strain ellipsoid Rivlin showed that a natural generalisation of Hooke’s law in the case of small
strains of such a solid to the case of large strains is given by:

ST +uB BT .FT-

<
<

or (2.9)
Ojj=-pj+ uBij , Bjj= V- Vi

with —p an all round pressure (p > 0) and u > 0 is the “shear modulus”, with u=2E/(1 + v), in
which E is the Young’s modulus and v is the Poisson’s ratio; B is the Finger deformation tensor.
Rivlin assumes v =1/2, so that u = E/3. Rivlin describes a material obeying the law (2.9) as an
incompressible, neo-Hookean material. Rivlin showed that if a cube of incompressible, neo-
Hookean material is subjected to a pure, homogeneous deformation and the stress components in
the deformed body are prescribed or specified, the state of strain of the deformed body is
uniquely determined. On the other hand, Rivlin showed that if the state of strain is prescribed, as
being exemplified in the case of simple shear, the state of stress in the deformed body is not
uniquely determined. This type of lack of uniqueness is often met with non-linear elasticity of
incompressible materials (Rivlin (1948)).

The principal axes of the Finger deformation tensor_]=3 =_1=3-1_3_T and the principal axes of the B
symmetric left stretch tensor {1 coincide, since with F = V-R and R™! = I_{T_there is the relation B =
VR (VRT=VR-R1.V=V2. Let A* be a (positive) principal value of Band A the
corresponding positive principal value of V. Then in the case of small strains the quadratic strain
(A2 - 1) and the linear strain (1—1) possess scantly different values. In view of this fact we replace

the constitutive equation by the stress-strain relationship
5 = —pI + 2[1\_]

or (2.10)

0y =-pdj + 2uVj;



A material that obeys this constitutive relationship is called sometimes a Varga material (Spencer
(1982), Varga (1966)). B

The use of V as measure of the strain is seldom practical since the elements of V are in general not
rational functions of the displacement gradients. However, there is no physical objection against
the use of V as measure of the strains.

In this study it is supposed that the shear modulus varies within the undistorted configuration
according to the law '

u=mXy, X120 (2.11)
where m is a positive constant.

Comment

In soil mechanics the deformations of strata are often determined by regarding these strata as
being elastic provided that appropriate values of the elastic parameters are selected. In general
the shear rigidity of soils is assumed to be a functional depending on, for example, the average
effective confining pressure, the ambient stress history and vibration history, the void ratio and
other geometrical and physical soil characteristics (Richart et al. (1970) p. 152).

In the cases of normally consolidated clays and sands the main feature of this functional
dependency is that the shear modulus varies with the square root of the isotropic effective stress
(Richart et al. (1970) p. 353). The constitutive equations (2.10) and (2.11) do not satisfy this main
feature since the shear modulus is only a linear function of the initial isotropic stress and does not
depend on an additional isotropic stress due to additional loadings such as surface loadings.
However, the only aim of this study is to investigate the effect of geometrical non-linearity on the
results of the linear theories of static subgrade reaction and surface wave motion of a Gibson half-
space.

Pure strain (no rigid rotation)

Dynamics

The search for solutions in finite elasticity often meets with insurmountable mathematical
difficulties, but appropriate assumptions can be made for the determination of exact solutions. In
this study it is assumed that there exists a non-empty class of non-trivial boundary value
problems which involve a pure strain in the body. Of course, this assumption of pure strain
cannot be anticipated on physical grounds.

The condition of pure strain implies that the rotation tensor reduces to the unit tensor, so that the
left stretch tensor equals the material deformation gradient tensor, which then becomes
symmetric.

Under these circumstances the constitutive equations (2.10) reduce to

ax;
ojj = —pdij + 2#@ 8, 1 =mXq (3.1a)

or, alternatively,



X,
0jj =-pdj + 2u cofactor (%) &, p=mX (3.1b)
1

since det(dx;/ 9X;) = 1. With i = mXj, the elimination of ojjbetween the constitutive equations
(3.1.) and the equations of motion (2.8), and the use of the condition of incompressibility yield the
following equations of motion:

P _
~ + (pg +2m) = pay

ﬂ’_ —

_ axz pay (3.2)
gﬂ —

B aX3 =pa3

The derivation of these equations requires some algebra, which is presented in appendix 3.

The resulting Eulerian equations of motion (3.2.) are mathematically similar with those governing
the irrotational motion of an incompressible perfect fluid. Of course, in contrast with a perfect
fluid, the body under consideration can support shearing stress. Thus the mathematical analogy
applies only to the equations of motion and the condition of incompressibility. On account of this
rather surprising result there exists a single-valued acceleration potential Q (say) (Malvern (1969),
p- 455, Lamb (1945), p. 19) which is given by

Q=Q(x,t) =;)1“{—-p +(2m + pg)xp + u/(t)} (3.3a)

where y(t) is a function of ¢ only, to be determined from the boundary conditions. With (3.2) and
(8.3a) it follows that

Q
4= 5 (3.3b)

This equation states that the motion is circulation-preserving, with a single acceleration potential
(compare Kelvin’s theorem on the conservation of circulation in a barotropic perfect fluid under
conservative body forces, (Malvern (1969), p. 434). We notice that our analysis shows that the
condition of pure strain imposed on the deformation of the body under consideration, forces all
motions to satisfy Truesdell’s theory of quasi-equilibrated motions, (Truesdell (1965), page 208).
According to this theory x = x( )_(, t) defines a static deformation for each value of the time ¢, and
the shear stresses in the motion are the same as those that correspond to the equilibrium in the
configuration occupied by the body at the time ¢.

Statics
In the case of static deformations the integrated conditions of equilibrium (3.2) (with a; = 0) lead
to the equation



-p+(pg +2m)x;=C, X120 (3.4)

where C is the constant of integration to be determined from the boundary conditions (compare
(3.3a)). In the undeformed state there is the hydrostatic pressure distribution

lexl = O-XZJCZ = O—X3X3 = _ngII Xl 20 (353)
Under these circumstances the constitutive equations (3.1) reduce to
O'xlxl = zexz = O-X3X3 =-p+ ZmXI (35b)

From (3.4) and (3.5) it follows that in the undeformed state x = X the pressure p represents a
hydrostatic pressure distribution: p = (pg + 2m)X;.

4. Non-linear statics

Plane strain

Firstly a basic solution of static plane strain deformation in planes parallel to the X3-axis is
considered.

Cylindrical co-ordinates are introduced according to:

x1=7cosh, xp=rsinb, x3=2z,
X1=Rcos®, Xp=RsinO, X3=7, 4.1)

where 0 < R < oo, — (7/2) < @ < (/2). See Figure 1.

) o

Figure 1. Cartesian co-ordinates and cylindrical co-ordinates.

The deformation is assumed to be

P2-R2=A,0=0,2z=2 (42)

The material deformation gradient tensor F takes the form (compare (2.5a)):
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- 0

- p) dR

-l 0z =
0 0 1 '

arr 4 (4.4)

so that det(I?) =1 and the deformation is isochoric indeed.
With (3.4) and C = 0 the constitutive equations (3.1) take the form

R
o,y  =—(pg +2m)r cosO + 2mRcosB - y

A
= —pgr cos@—2mcosH - v

ogg =—(pg +2m)r cos® + 2mRcosh - %

=—pg - 1 cosf (4.5)

0y =—(pg +2m)r cos® + 2mRcosO
0,9=0g, =0, 0g; = 0,9=0, 0y, =0,,=0

It should be noted that components of stress satisfy of themselves the conditions of equilibrium,
which now take the form:

a;rr+&7o-—ee + pgcosf=0
1 90gg
r o6
90,

oz

- pgsing =0 (4.6)

Rigid semi-cylindrical punch

The first application refers to the case A >0 in (4.2). This application turns out to represent the
case of a weightless rigid semi-cylinder of radius ry = A'/2 which is pressed against the upper
surface without friction in such a way that the final upper boundary including the punch is flat
(figure 2).

With A = rg? the deformation (4.2) takes the form:

P-R2=r? 0=6, z=2 (4.7)

11



rigid punch

undeformed deformed
l X l Xq
Figure 2. Pressed rigid semi-cylinder.

The condition of equilibrium (3.4) reads with C = 0:

p = (pg + 2m)rcos® ‘ (4.8)

With (4.5), the components of the stress are given by

2
’
Oy = —pgr cosf — Zm% cos6

Opp = —pgr cosd (4.9)
0,, =—(pg +2m)r cos@ + 2mRcos6
0,9=0g =0, 079=0g; =0, Oy =0, =0

so that the boundary conditions of zero stress at 6 = £71/2, r 2 1, are satisfied. The components of
stress (4.9) must balance the pressing downward line force P per unit length of the punch and the
body force due to own weight. The horizontal and vertical equilibrium yield, respectively,

/2
-2 f (G 5in 6 —0, cosB)rdO = 0 (4.10a)
0
/2 z .
2 j (G c0S8+0, 5in )rd =7(pg + 2m)rg? + 5pg(r? ~ re?) (4.10b)
0

The moment equilibrium gives
n/2
2 J' r6,rd6 =0 (4.10¢)

0

From the vertical equilibrium condition (4.10.b) it follows with r = g that the downward pressing
force P per unit length is given by:

P=(pg+ 2m)gr02 @11)

12



We notice that in the absence of rigidity, i.e. m = 0, the line force P just balances the weight of the
displaced incompressible perfect fluid. From the expressions (4.8) and (4.9) it follows that the
stress distribution at the location of the cylindrical part of the punch r = r,, so that R = 0, is given
by:

p(r =rg) = (pg + 2m)rocosO
Oy =10) = Oge(r=10) = —p(r =r0) (4.12)
Opg = —pPgr cosO

Thus at the punch boundary the state of stress is not isotropic. As a consequence on the location r
= 1y there are material planes which must bear shear stress, while the rigidity there is zero.
However, the surface r = g arises from the line R = 0, so that the deformation at R = 0 is singular.
Due to this singularity material planes at the deformed surface r = g with zero rigidity should
transmit shear.

Cylindrical notch

The second application refers to the case A < 0in (4.2) and it turns out to represent a semi-
cylindrical notch in the deformed configuration (figure 3).

With (-A) > 0 we put

Pg 5

-2 (4.13)

in which r is the radius of the semi-cylindrical notch in the deformed configuration (figure 3).
With (4.13) the deformation (4.2) takes the form

RZ_ 7‘2 — %02, =0, z=2Z (4.14)

undeformed deformed

Figure 3. Cylindrical excavation.

The components of stress in the final configuration are (compare (4.5))
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o2

Oy =—pgr cosf + cosf

r
Ogg = —pgr cosd

Pgmz (4.15)
0, =—pgr cosb + 2mrcosH {(1 + W)UZ - 1} :

Cy9=0g, =0, 0g,=0,9=0, Oy =0, =0

It can be verified that the upper boundary of the deformed configuration is free of stresses. Along
the semi-cylindrical bottom o;, = 6,9= 0 and along the plane portion of the boundary

gy = 0g, = 0.

Conformly the transformation (4.14) a semi-circle of radius 7, in the deformed configuration
corresponds to a a semi-circle of radius Ry = rp (1 + (pg/ 2m))1/ 2in the undeformed configuration.
In this way the semi-cylindrical notch with radius , can be considered as the result of the
removal from the undeformed body of semi-cylinder of material with radius Ry.

On the other hand we may reason as follows (Sparenberg (1996)). According to the
transformation (4.14) the removal of a semi-cylinder with radius Ryp* = (pg/ 2m)1/ 2
undeformed body gives rise to a deformed elastic half-space with a plane upper-boundary,

7o from the

because r becomes imaginary for values of R < Ro*. This removal gives rise to the same stress
distribution (4.15). A subsequent removal of a semi-cylinder with radius rg from the deformed
elastic half-space with a plane upper surface leads to the semi-cylindrical notch with radius g in
the deformed configuration, since Ro2+ 12 = 12 (2m + pg)/2m = Ry?. (We notice that the stress
distribution in the deformed half-space with a plane upper boundary is singular at the point r =
0).

Sparenberg remarks that the way in which the final notch of radius ry can be effected, is not
unique.

Spherical deformations
It is noticed that the solutions of the corresponding spherical cases of a pressed rigid punch and
an excavation may be obtained by considering the family of deformations

P-R3=B, 6=0,¢p=0 (4.16)

where (7,0,¢) and (R,0,®) are the spatial and r_naterial spherical co-ordinates, respectively, and B
is constant. The deformation gradient tensor F has the form

dr

R

F= 0 R 2 (4.17)
0 0 R

and the stress tensor has the form



o, 0 0
o=| 0 o O (4.18)
0 0 oy

The condition of incompressibility, det (F)=1,is given by

dr

&1 (4.19)
We restrict ourselves to the punch problem so that (4.16) takes the form

PR =1y (4.20)

The constitutive equations (3.1) become

dr
O =-p+ ZchoseaE
1’03
=—p + 2mrcosO — 2mcoser—2 (4.21)
Ogp = —p + 2mR o8

Opp = —p+ 2mrcos6 = Ogg
Org = Ogp=0g; =0

The equations of equilibrium are (Malvern (1969), p.671),

90, 20y, — Ogg— Opp

ar + pgcosf=0
10069 1 )
r 50 +7 (09— Opp )cos0— pgsinf =0 (4.22)
1 90pp B
rsing op

Elimination of the stresses between (4.21) and (4.22) and integration of the first equation of
motion gives

p = (pg + 2m)r cos6 (4.23)

and

3
7
Oy = —pgr cosf —2m cos o r%

Opg = Opp = —Pgr cosO (4.24)
Cr9= Ogp=Ogpr =0

15
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The components of stress satisfy the boundary conditions of zero stress at 6= +7/2 and r > .
The pressing punch force P is given by

P = (pg +2m) 23—7: 1o (4.25)

Mathematical accidents

From the linear theory of elasticity it is known that due to normal surface loading the stress
distribution in the Gibson soil has exactly the same form as the stress distribution in a
homogeneous (incompressible) isotropic elastic half-space. This rather surprising result has been
established by Lekhnitskii (1962) for the Flamant problem of a vertical line force and the
Boussinesq problem of the vertical concentrated force, and therefore holds for any normal
loading on basis of the principle of superposition. The awareness of these mathematical accidents
may be useful. It can be shown that when the radius of the punch is very small and the quadratic
stretch 2>~ 1 is replaced by the linear stretch 4 - 1 the non-linear stress distribution reduces to the
Flamant or Boussinesq distribution which become now singular at the location of line force and
point force application.

It is also purely accidental that the linearisation of the notch problem leads to a stress distribution
which is similar to the stress distribution belonging to the removal of a semi-cylinder (-sphere)
from a homogeneous (incompressible) isotropic elastic half-space when calculated with the linear
theory.

Static subgrade reaction theory

The governing equations and the solved problems show that a downward static displacement w
of a point of the half-space is proportional to an additional isotropic stress —Ap at that point
according to:

Ap = (pg + 2m)w (4.26)

From the linear theory it is well-known that the settlement wy at some point of the plane upper
surface is proportional to the intensity —gq of the normal stress on the upper surface at that point
according to:

9o = (pg + 2m)wy (4.27)

In this case the stress at the location of the loaded area is purely isotropic. From experimental data
in soil mechanics and from the linearised deformation theory of a homogeneus isotropic elastic
half-space it is known that the stress distribution under a rigid plate that undergoes a uniform
settlement, is not uniform so that the theory of subgrade reaction according to (4.27) is not
satisfied.

Barkan ((1962), p. 28) notices that the weight of footings influences the rigidity of the soil stratum
since an increase of pressure gives rise to an increase of rigidity. With an increase in base contact
area between the footing and the soil upper surface, a greater depth of soil is affected by the



weight of the foundation, and the influence of deeper soil layers on the footing settlement
increases. Barkan supposes that an increase in base contact area and the increase with depth of
the initial stress due to own soil weight give rise to the validity of the theory of static subgrade
reaction for relatively large foundations as a consequence of the increase of the rigidity with
depth (see also Terzaghi (1943), p. 396).

Concluding remarks

The Stoneley-Gibson-Varga elastic stratum represents the geometrically non-linear counterpart of
the linear Gibson elastic half-space.

There exists the mathematical resemblence between the equations of motion governing the
irrotational wave motion through the Stoneley-Gibson-Varga stratum and the equations of
motion governing the irrotational deep water motion.

The static downward settlement w of a point of the stratum due to external loading is
proportional to an additional pressure —Ap at that point according to

Ap = (pg +2m)w

This result is exemplified for the cases of a punch indentation and an excavation. The stress
distribution in the stratum is not isotropic due to the shear rigidity of the stratum.

Appendix 1. Historical review

An isotropic, elastic (half-) space is quite appropriate as a seismological model of the earth.
Effects of possible departures from this ideal model do not affect the cardinal characteristics of
seismological phenomena (Bullen (1967), p. 85).

In seismology two types of surface waves are distinguished, namely, Rayleigh waves and Love
waves.

In Rayleigh waves the displacements of the particles consist of two components, one vertical and
one horizontal, parallel to the direction of wave propagation. In Love waves the displacements of
the particles are parallel to the free surface and pendicular to the direction of wave propagation.
Apart from this distinction in wave polarisation, there is a fundamental distinction between
Rayleigh waves and Love waves, inasmuch as the former can exist in a homogeneous half-space,
whereas the latter can exist only in a non-homogeneous half-space in which the shear modulus,
and as a consequence the velocity of the distortional waves, increases with depth. This
inhomogeneity of the shear modulus causes the dispersion of the Rayleigh waves, whereas it may
involve the very existence or non-extistence of Love waves, that are always dispersive.

E. Meissner (1921) analysed the Love-type waves for a quadratic and linear increase of the shear
modulus with increasing depth and for density increasing with depth (see, for example,
Vardoulakis (1981) and (1982)).

R. Stoneley (1934) analysed Rayleigh-type waves in an incompressible, isotropic, elastic half-
space of a constant density and with a shear modulus y increasing linearly with depth X;
according to the law u = gy + mXj.

17
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When we analyse a group of plane harmonic waves of wavelength 27/ travelling in the
horizontal direction with velocity c, there are the following fundamental parameters (Stoneley
(1934), Kruijtzer (1976)):

c2xp 2- K- 2
_ _SToaq o 5 _Ho
9="om » =" 2 T’ &7 p (a1.)

where p is the constant mass density of the Stoneley half-space and ¢ is the velocity of
propagation of the distortional wave (S-wave) being transmitted through an unbounded
homogeneous medium. When we assume that in the Stoneley half-space acts an original
hydrostatic stress distribution due to a constant gravity, that increases linearly with depth, then
the dispersion relation of the waves is given by (Kruijtzer (1976)):

—m*a? - U(1-g, 1, a) + m(pg + 2m — 2mq + 2ma) - U(-4,0,a) = 0 (a.1.2)

where g is the acceleration due to gravity and U are Kummer functions. In the absence of the
superimposed original hydrostatic stress distribution the relation may be reduced to Stoneley’s
dispersion relation in terms of Whittaker functions. The Kummer functions and Whittaker
functions, both confluent hypergeometric functions, are closely related.

It is historically noteworthy that at the time of Stoneley’s investigations Olver’s theorems on the
asymptotic expansion of the Kummer and Whittaker functions were not yet available (see Slater
(1960)). These theorems guarantee a complete investigation of the dispersion relation (a.1.2)
(Braaksma, 1975).

Ifin (a.1.2) both g and 4, with 1 < (a/4g) <o, i.e,, 1< (¢2/c®) < o, are allowed to approach infinity,
the relation (a.1.2) reduces to the well-known Biot relation (Biot (1964)):

pgc’
KUoCs

c 2 ¢ 1/2
5+ (2-—5)"=41-—3) (a.1.3)
Cs c

S

This relation (a.13) gives the velocity of wave propagation of Raylaigh waves transmitted over
the upper surface of an incompressible homogeneous, isotropic elastic half-space being subjected
to an initial hydrostatic stress distribution due to a constant gravity: 0.955 < (c/c;) <1 when

0 < (pg/xug) <1.

The case of vanishing top rigidity, i.e. 2 = 0, gives rise to various types of waves. In the particular
cases of g is an integer the Kummer functions reduce to Laguerre polynomials and each integer g
generates its own wave. This result has been re-established partly by Vardoulakis (1981), who
gives no account to initial hydrostatic stress distribution to gravity. Meissner (1921), who
analysed the Love waves, had already noticed that such a discrete spectrum of waves exists.

In the more general case in which g is not an integer and the top rigidity vanishes, a = 0, the
relation (a.1.2) reduces to



_ (a.1.4)

p-g +2my1/2
T

In this case the wave motion is irrotational and the waves are mathematically similar to the
gravitational waves in deep water (as a non-viscuous incompressible fluid). Boundary value
problems involving a normal stress on the upper surface, give rise to an irrotational motion
(Kruijtzer (1976)), since there is a continuous spectrum of waves.

In the case of a vanishing top rigidity the Stoneley half-space reduces to the Gibson half-space. In
his famous 1967-paper R.E. Gibson showed that the upper-surface of this half-space, being named
after him, reacts under static normal loading like a uniform bed of springs (a Winkler
foundation). The effects of non-vanishing top rigidity and of compressibility on this static result
have been widely investigated by Awojobi and Gibson (1973) and Brown and Gibson (1972). The
effect of finite depth has been investigated by Gibson, Brown and Andrews (1971).

Awojobi (1974, 1982) investigated some elastodynamic boundary problems for the Gibson half-
space. He presented his solutions in terms of numerically solved integrals. Some explicit solutions
have been presented by Kruijtzer (1976). Rather recent treatises on the statics and the dynamics of
a (linearly) non-homogeneous half-space are presented by Vettros (1998) and Muravskii (1997).
The awareness of the linearised irrotational motion gave rise to the search for the corresponding
non-linear, irrotational motion.

Appendix 2. Constitutive equations

Three fundamental postulates are assumed to be valid for any constitutive theory of purely
mechanical (isothermal or isentropic) phenomena in a continuous medium. The three postulates
are (Malvern (1968), p. 379):

1. The Principle of determination for stress: the stress in a body is determined by the history of
the motion of the body; in elasticity this history dependence consists only in possessing a natural
state to which a body will return upon unloading.

2. The Principle of local action: in determining the stress as a given particle, the motion outside an
arbitrary neighborhood of this particle may be disregarded, so that action-at-a-distance stress-
strain relations are excluded.

3. Principle of material frame-indifference: constitutive equations must be invariant under
changes of frame reference. That is, two observers even if in relative motion with respect to each
other, observe the same stress in a given body. This principle holds if the stress-strain relation is
not affected by mass effects (Coriolis forces). Truesdell stipulates that Newton’s Third Law of
action and reaction represents this principle in newtonian terms.

We firstly pay attention to the third principle. We assume that relative motion of the observers
consists of rotations, reflections and point reflections because a translation is of minor interest.
Such motions are represented by an orthogonal tensor Q with Q' = QT, which is a function of the
time t. This change of frame induces the following transformations.

A vector v as seen by an observer will be the vector v = Q - v as seen by another observer.

A material line element dX in the undistorted body becomes the line element dx in the deformed
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body accordlngly dx = F - dX. In the same way dx’ = F’- dX’. With dX = dX’ and dX’ = Q dx, it
follows that F’ = Q - F. Further, let dp be the traction vector on the area da with outer normal n in
the deformed body, so that dp = 6 - n da. In the same way dp’ = G_ n’da, since scalars are
invariant under a change of frame. With dp’ = Q- dp and dn’ = Q- dn it follows that
7=G0-Q"
On the base of the first two principles, the most general constitutive equation of an elastic
material is given by

all

_ E(l?), (a2.1)

where G is the true stress in the deformed body and the response function g is a tensor-valued
function of the deformation gradient tensor F. o
To ensure frame indifference, the response function g(F) must satisfy

QT (a.2.2)

since 1=3 b_e omes Q F and ¢ becomes Q G- QT Now let QT R represents a local rigid rotation,
and F=R - U with U= UT then the relation (a.2.2) becomes:

gRT-H-RT 50 R,

GII

so that with RT.F=R.F-=

c=gF) =R g(U) RT (@.2.3)

Thus frame-indifference requires that in equation (a.2.3) the dependence on F must take the form
of an arbitrary function of the right stretch tensor U with an additional explicit dependence on
the local rigid rotation R. It may be noticed that the symmetric PlOla-Kll‘Cthff stress

o =(detF)F1. - FYHT possesses the independence on Rie.c= h(U) independently of either
isotropy or non-isotropy of the elastic material.

The isotropy or material symmetry group is the group of all static density-preserving either actual
or non-actual deformations of the material reference configuration into a new material reference
configuration such the material at a particle P in the original configuration and the material at the
same particle P in the new configuration are indistinguishable from each other in their response
to the same loading. The definition of an isotropic simple material, e.g., an isotropic elastic
material, is given in terms of the full orthogonal group with members QwithQ™'= QT and
det(Q) +1, including 1and-1.Asa consequence, for isotropic materials

g(ﬁ) =§(1=3 Q) or 2(1:3) =§(1=3 -QM). (a.2.4)



Since (a.2.4) holds for any non-singular ; including 5 . 1? for any F, we may write (a.2.4) in the
form:

g(Q-F)=g@Q F-QD. (2.2.5)

With use of (a.2.2), with (=2 fixed in time, we see that an elastic body is isotropic if and only if its
response function g(F) relative to some undistorted state satisfies the identity:

Q-gF-QT=g@Q F-QN. (@.2.6)

R-gU) RT=g® U-RN=g(V), F=R-U=V-R. (a.2.7)

c=g(V) (a.2.8)

This dependency of the actual stress in the deformed body on the left stretch tensor V holds only
for isotropic simple materials (Malvern (1970), p. 391).

We now derive the expression for the strain-energy function W of an incompressible Varga
material. We follow the method of Rivlin (1948).

The strain ellipsoid has the property that the length of its radius in any direction is proportional
to the stretch for an element that lies in that direction in the deformed state. Let us suppose that a
cube of unit edge in the unstrained state is strained in such a manner that in the deformed state it
is a cube whose edges are parallel to the axes of the strain ellipsoid and have lengths 41, 1, and
A3, respectively, such that 434,43 = 1, satisfying the incompressibility condition. Further, let us
suppose that the deformation is a pure, homogeneous strain under action of three pairs of equal
and oppositely-directed forces, fi, f, and f3, mutually at right angles. With (compare the
constitutive equations (2.10)):

o11=-p+2uli, Ai =—Pﬂ.z),3+2,u=f+2/,l,
- - _P
On=-p+2k, f= r’)«1/13+2ﬂ—)’2+2u,

O33=—p + 2uAs, f3 = —pﬂ,lﬂ,z +2u= % +2u.

The work W done, in straining the material quasi-statically from dimensions 1x 1 x 1 to 4; X A X
A3 is given by

21



M A A3 A Ay A3
W=p {I;’_ldll+‘[;—1dﬂq+j%dﬂg} +2u {Id11+Id12+Jdl3}
M = 1 4 4 4
Thus,

W=2u (A1 + Ay + A3-3).
since 43443 = 1. We notice that W2 0, since the arithmic mean (A7 + A, + A3)/3 is always larger
than the geometric mean (2,1122,3)1/ 3= 1, as mathematics learns.
The work W is the stored energy per unit volume of the strained material with the principal
extensions are A1 - 1, A, — 1, A3 — 1. Finally we notice that (41 + A, + A3) is the invariant trace of V.
Rivlin’s incompressible, isotropic neo-Hookean material possesses the strain-energy function
W= u (112 + ).22 + 2,32 —3),
where 112 + 2,2 + A3 is the trace of B=F-FT=V2
Appendix 3.

In the equation of motion (2.8) into the x;-direction we consider the term

00y,x; OO0y x; OOCy.yx
A= 141, 21 3%1

o o | o (a3.1)
with according (3.1):
aﬁq aJCQ ox;
Oy =P+ 2mX1 55+, Oy = 2mX1 357, Oy = 2’”X13_X31 (a.3.2)
Elimination of the stresses between (a.3.1) and (a.3.2) gives
dp 0X; odx;  0X; dx, 0X; Ox3
A=-F L0,100 0N 0N 9%y 04 %3
x1 m{ o, oX,  ox, oKX,  oxs 9X, 033
a.3.

d [ ox 0 [ ox 0 [ ox
omX 42| 2 ¢ 22 |9 223
" 1{E)x1(3X1)+3x2(8X1)+8x3[8X1)}
From (2.5¢) it follows that

0X; dx;  0X; Jx, A 0X; Ox3
idalel i Bddel Wi B i) Wi B | 3.4
% 9X, om, 9K, dxy o (@34)

Further, since F.-Fl=1and det(;) =1
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_a_JEL_aXZ 3X3 8X3 8X2

90X, dx, O0x3 Ox, oxs
where the right hand side is the co-factor of 9X;/dx;. Similarly:

axy __{ax1 X3 0X, aﬁ}

9X,  |ox, ox; ox3 ox,

B&_BXI BXZ aXZ aXl

0X; Ox, Ox3 Ox, Ox3
Substitution of (a.3.4) and (a.3.5) into the expression (a.3.3) gives

4 J
A=—L 4 om+2mX |=—
ax1+ m+2m 1{ax1

09X, 0X; 0X; 9X,
o0x, Ox3 Oxy Oxs

(a.3.5a)

(a.3.5b)

(a.3.5¢)

(a.3.6)

Since F is symmetric: 0X;/dxy = 0Xi/dx;, the third term of (a.3.6) vanishes, so that the expression

(a.3.1), being equal to the expressions (a.3.3) and (a.3.6), reduces

op
A=- e +2m
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