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1. Introduction

In soil mechanics a Gibson soil is defined as being an incompressible, isotropic, elastic half-space
X1 =0 in which the shear modulus y increases linearly with depth X; from zero on the upper
surface X1 = 0, according to the equation ¢ = mXj with m a positive constant.

In his famous 1967-paper Gibson showed that the upper surface of this elastic deep stratum reacts
under static normal loading like a uniform bed of springs, a so-called Winkler foundation
(Gibson (1967)).

Any point of the upper-surface X1 = 0 settles an amount w (X1 = 0), directly proportional to the
local intensity —q(X; = 0) of applied normal stress according to the law w(X; = 0) = (X1 = 0)/ 2m);
outside the loaded area the upper-surface does not settle.

It has been noticed that 1) the induced deformation at the locations X7 > 0 is irrotational, 2) the
state of stress on the location of the (loaded ) upper surface X; = 0 is purely isotropic and 3) the
settlement w(X7) of a point at the level X7 > 0 is directly proportional to the all-round pressure
-p(X7) at that point according to w(X1) = p(X1)/(2m). These settlements at the levels X; >0
decrease with increasing horizontal or vertical distances from the loaded surface area. Of course,
the state of stress on the planes Xj > 0 is not isotropic since the Gibson soil possesses shear
rigidity at planes X; > 0. Further, it has been realized (Lekhnitski (1962) and Gibson (1967)) that
the stress distribution in the Gibson soil due to a static normal surface loading corresponds
exactly to the stress distribution in an incompressible homogeneous isotropic elastic half-space
due to the same surface loading.

When it is assumed that the Gibson soil has been subjected initially to an hydrostatic stress
distribution due to its self-weight own weight, the quantity 2m must be replaced by (pg+2m) with
p the uniform mass density and g the acceleration due to gravity.
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It has been shown that the linear equations governing the dynamics of the Gibson soil resemble
mathematically the linearized equations of the deep water motion (Kruijtzer (1976)). For example,
when we analyse a group of plane harmonic waves of wave length A/27zk travelling through the
Gibson soil in a horizontal direction with velocity ¢, it is found that there exists irrotanional
surface waves with wave velocity ¢ = ((pg + 2m)/ (pi))"/2. These irrotational waves are
mathematically similar to the (irrotational) gravitational deep water surface waves with velocity
c= (g/l(')l/z.

In a recent paper we have introduced the geometrically non-linear Gibson soil, the so-called
Stoneley-Gibson-Varga elastic half-space, in which the actual strees and the left stretch tensor are
correlated (Kruijtzer (2001)). It was shown that the non-linear equations of the irrotaional
dynamics of this half-space resemble mathematically the classical non-linear equations of the
irrotanional deep water motion. Furthermore, it was shown that the settlement w(X;) of a point at
the level X; > 0 is directly proportional to an all-round pressure —p(X1) at that point according to
w(X1) = p(X1)/ (pg+ 2m). These settlements at the levels X; > 0 decrease with increasing horizontal
or vertical distances from the loaded surface area. Of course, the state of stress on the planes

X; >0 is not isotropic since the Gibson soil possesses shear rigidity at planes X; > 0. It may be
noticed that the static stress distribution in the Stoneley-Gibson-Varga elastic half-space is not
similar to the stress distribution in the corresponding geometrically non-linear incompressible
homogeneous elastic half-space.

In this treatise we compare the responses of deep water, the Gibson soil and the homogeneous
isotropic elastic half-space on low and high frequency vertical surface loadings including the
effects of compressibility and incompressibility of these strata. Our comparative treatise reveals
not only various mathematical and physical resemblences or similarities, but also provides with
an application in soil mchanics.

In theoretical soil mechanics water saturated soils are often conceived to behave like water
saturated porous elastic strata (elastic skeletons). In the fully drained state there is no excess of
water pressure so that the stratum behaves like an ordinary elastic medium. In the fully undrained
state the water velocity equals the solid velocity. In this case the medium behaves as being an
elastic medium but the modulus of compression of the medium depends mainly on the elasticity
of water volume and scantly on the bulkmodulus of the elastic skeleton (ensemble of packed
grains).

The fundamental 1956-paper of G. de Josselin de Jong is our guide in considering the
corresponding responses of a water saturated porous isotropic elastic half-space.

Finally we notice that the truncated semi-infinite cone-model of the elastic half-space for vertical
vibrations (J.P.Wolf (1994)) is based on the results of the classical half-space theory.

Motion of footings and floating bodies

Linear dynamics

We want to compare the vertical motion of a rigid footing resting on the surface of a Gibson soil
or a homogeneous incompressible isotropic deep elastic stratum with the corresponding heave
motion of a rigid floating body on deep water (figure 1). We did not find non-linear solutions, so
we restrict ourselves necessarily to solutions of the linearised equations of motion. In the



linearised theories the difference between the gradients with respect to the material coordinates
and the gradients with respect to the spatial coordinates is disregarded. Further, particular stress
distributions due to special external loadings may be superposed.

footing
l P, / floating body\ Py
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rigid or Wy hemisphere
disk elastic
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Figure 1. Footing on an elastic subgrade or floating body on deep water.

In general, the behavior of linear systems can be described in either the time domain or the
frequency domain. It may be well-known that the characteristics of the high frequency steady
state motion of such systems due to external periodic loading may be obtained from the initial
motion of these systems due to an impulsive external loading (Maskell and Ursell (1970) in Ursell
(1994), Cummings (1962) and Ogilvie (1964)).

Single degree of freedom model

In engineering mechanics the vertical motion of footings and floating bodies is often described by
a lumped-parameter-system with a single-degree-of-freedom. With wg = wy(t) the vertical
displacement of the rigid body and Ry = By() the external vertical centric loading the equation of
motion of the body reads

(M + M " Ying () + Cing () + Kw(t) = By(1) 2.1)

with M° the footing mass, M" the added (in-phase) subgrade mass, C the coefficient of damping
due to wave radiation through the subgrade, and K the coefficient of the subgrade restoring
force.

The value of M", C and K depend on the induced subgrade motion.

With Py(t) = Bye'®" and wp (1) = Woe ! the steady state motion of the linear system is given by the
equation '

—(M°+ M" (0))w* Wy +iw C(@)Wg + K@)y = By 2.2)

with M*(w) the added mass, C(w) the damping factor and K(w) the restoring coefficient. These
quantities, M*(), C(w) and K(w) are frequency dependent.

We consider the cases in which a weightless rigid circular disk or infinitely long rigid strip, an
embedded rigid hemisphere or infinitely long semi-cylinder are attached to the upper surface of
the subgrade (Figure 1) and are loaded by a vertical centric force Py = Py(t), so that the rigid bases
undergo a vertical displacement wy = wy(t) according to
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wo(t) = E(#) Po(t) (2.3)

with F(t) the response function. If Py(t) = 130 % and wolt) = Wy ¢'%* then the equation (2.3) of the
steady state motion takes the form

Voo €9 = — (fy +ifs) By el 24)

with fj and f, two functions of frequency being effectively the in-phase and out-phase
components of the displacement w(t). In Appendix 1 the results of Bycroft are schematically
presented and completed.

Deep water

The incompressible inviscid fluid subgrade is assumed to be intially, at time ¢ =0, at a state of
rest. We suppose that at time ¢ = 0. the upper surface has been subjected to an impulsive pressure
—po(t = 04). According to the linearized theory this impulsive pressure is represented by the value
—-p@o(t = 0,), where ¢y is the value of the velocity potential at the loaded area at time ¢ = 0, (Stoker
(1957), p. 150, Lamb (1945), p. 384):

pﬂ(r/t = 0+) = —P%(rrt = O+) (25&)

with p the water mass density and r the radius of the loaded area. (We may notice that a
permanent flow passing an obstacle generates at each instant of time an impulsive pressure on
the obstacle).

We now consider the case in which a thin weightless rigid circular disk with radius r( at the
upper surface is loaded by a vertical and centric impulsive force By. Then (Lamb (1945), p. 120
and p. 138)

2
Po(rt=0,) = =p~ - g (t = 0,)-(re® = )!2 (0 <7 <19)

(2.5b)
=0 (r>ry)
where wq (t = 0,) is the initial velocity of the disk.
Integration of (2.5b) with respect to r gives
.2 4
R = j po 27r dr = 3 pr03 wo(t = 0,) (2.5¢)

0

It follows that high frequency added mass M'is given by M = (4/3)pry°.

In the case of an infinitely long weightless rigid strip of width 2d the added mass M" is given by
M" = (1/2)mpdy? (Lamb (1945), p. 85).

In the theory of linearized ship motion the rigid disk is replaced by a semi-submerged sphere and
the rigid strip is replaced by a semi-submerged infinitely long cylinder. The vertical impulsive
force By on a floating sphere of radius o and with mass M° = (2/3)7pro> gives rise to the high



frequency added mass M" = M°/2 = (1/3)zpre®. The vertical impulsive line-force on a floating
cylinder of mass M° = (1/2)mpro* per unit length, gives rise to the high frequency added mass

M" = M° (Ursell (1994)), Lamb (1945), pp. 80 and 124). These reults may be proved as follows.
We consider the translational motion of weightless rigid sphere in an infinite incompressible in-
viscid fluid. At each instant of time the moving sphere generates an instantaneous fluid motion.
The fluid pressure contains a linear portion and a non-linear portion (Lamb (1945), p. 124). The
non-linear portion generates a zero resulting force on the sphere. At the location of a plane
through the center of the sphere perpendicular to the direction of motion of the sphere, the linear
portion of the pressure vanishes while the non-linear portion does not vanish. The kinetic energy
of the fluid in given by (2/3)zmpre® w2 with p the fluid mass density,ry the radius of the sphere
and wy the velocity of the sphere. The resultant effect of the fluid pressure in the direction of the
motion is given by ~(2/3)mpry* g , so that M = (2/3)7pr(’ is the added in-phase mass. Since
according to the linearised theory at the plane through the center of the sphere and pendicular in
the direction of the motion of the sphere the pressure vanishes, we are lead into the following
result. '

When a rigid floating hemisphere of radius rj is subjected to a vertical centric impulsive force B
at time ¢ = 0 (Figure 1) the sphere gets the downward initial velocity wo(t = 0.) according to

By = (M° + M) w(t = 0,) (2.6)

with M° is the mass of the semi-sphere and M’ is the added in-phase fluid mass: M° = (2/3)mpr®
and M" = (1/3)mpry® = M°/2. In the case of an infinitely long circular semi-cylinder M° = M =
(1/2)mp rg? (Lamb (1945), p. 77).

The analysis by Newman (1969) gives rise to a quantification of the high frequency added mass
and to an indication of the low frequency added mass as follows.

The forced motion of a floating body resting on deep water generates surface waves due to
gravity. On the free surface the pressure —pj is equal to zero, so that at this location the linearised
condition @?¢ - gw = 0 must be satisfied, with ¢ the velocity potential, w the vertical surface
velocity and g the acceleration due to gravity (Lamb (1945), p. 363).

//)t\\ //4\\

klj free surface w

in-phase out-phase

(@) (b)

Figure 2. Method of images.

In the case of very high frequencies @*@ >> gw, so that the potential ¢ vanishes on the free
surface (short waves). By the ‘method of images’ (figure 2a) an upper hemisphere can be added to
the lower hemisphere. When the upper and lower hemisphere move in-phase, the normal
velocities on the upper and lower hemisphere are opposite in sign, so that the potential ¢ is equal
to zero on the ‘free surface’. This corresponds indeed to the problem of a sphere moving in a fluid
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of infinite extent, so that the high frequency mass added to the hemisphere is equal to

M = (n/3)pre® = M°/2.

In the case of very low frequencies ® we have % << g on the free surface so that the normal
surface velocity vanishes (long waves). When an image hemisphere is added to the submerged
hemisphere and the upper and lower hemisphere move 180° ot of phase (figure 2b), the vertical
velocity at the original free surface is zero. In fact there is no longer a free surface problem, but
the problem of pulsation of a dilitating ‘sphere” of changing volume. From the litterature on ship
motions it appears that the low frequency added mass is equal to about (3/2) times the high
frequency added mass (compare the purely radial expansion motion of a sphere in a infinite
incompressible fluid in which case ¢ does not vanish at the ‘free surface’ and the added mass is
equal to 4-(3/2)(2/ 3)mpry,> (Lamb (1945), p. 122)., but is smaller than twice the high frequency
mass (Appendix 3). It is noticed that in two-dimensional problems the low frequency added mass
becomes mathematically infinite, because from the continuity of finite flux of fluid, oscillating
back and forth, there is only the way out at infinity. In three dimensions this infinity does not
occur because the fluid flux can distribute itself spatially in all three directions. On the other
hand, long waves generate the influence of the ‘bottom’ of ‘deep water’ so that an infinite added
mass does not arise.

In figure 3 we present a schematic indication of the added mass M’ and the damping coefficient
C.

c
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Figure 3. Schematic indication of the added mass M* and coefficient of damping C.

Let A be the frequency dependent ‘wave-height ratio’, i.e., the ratio between the amplitude w* of
the outgoing waves and the amplitude @, of the oscillatory hemisphere:

A = (w* /@) then C = p (g/w)? A2/ o.

with A = A(w) and A(0) = 0.

We notice that it will appear that in the case of a rigid disk resting on a Gibson soil and an
incompressible homogeneous elastic half-space comparable results concerning the low and high
frequency added mass and damping coefficient arise.

Finally we notice that when a rigid weightless disk of radius g rests on the upper surface of deep



water and is subjected to a periodic displacement wy = wy ¢, the steady state stress distribution
under the disk is given by the dual integral equations (compare Kruijtzer (1976) and appendix 2).

Po)= [ po(rirdo(rsxds, po(r)= [ Bo(s)sio(srds
0 0

and

J.———-—dpo(S).s. Jzo(sr) s = WO (0 <r< 7‘0)

w°p
0 pg-—F

s (2.7a)
po(nN= J.fzo(s) -s-Jo(sr)ds=0 (r=ry)
0

where we have used wy () = Wy &% and po(r,t) = f)o(r)eia’t. Further, Jy() is the Bessel function of
zero order.

We notice that in the static case, @ = 0, the equations (2.7a) reduce to

pgwy (0<r<py)

0 (r>n) (2.7b)

Po(r)= J;O(s)~s~10(sr)ds = {
0

so that py(r) =pgwy.
Further we notice that the asymptotic development of (2.7a) for large values of w gives rise to the
solution (Lamb (1945) p. 138)

Po(r) = —%cozp{ro2 -2 0<r<n)

=0 (r>0) (2.7¢)
so that
ﬁO =- % pr03a)2ﬁz0 (27d)

without coefficients of damping and restoring force.

(Incompressible) homogeneous isotropic elastic half-space
Firstly, we consider the case in which a weightless rigid circular disk of radius rg is attached

frictionless to the horizontal upper surface of a homogeneous, isotropic, elastic half-space and is
iot

asumed to undergo a vertical periodic displacement wy(t) = wy e'“*. The steady state solution of

this boundary value problem is given by Awojobi and Grootenhuis (1965):
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T o = I_tv'f;

'!;(PTl) UO(S)SJo(Sr)dS=w—2g O<r<n)

6'()(") = J-CTT()(S)S.Io(Sr)ds =0 (r>n)
0

with 63(r) the normal stress at the upper-surface with
S0(r) = [ Bo(s)sio(ords, Go(s)= [ Go(rIrdo(rs)dr
0 0

and ¢(s) the Rayleigh function
o(s) = (232 —6022)2 —452(52 _ 6012)1/2(S2 —(022)1/2

with

6‘12

_ _y1
2(1-v)u 022=£’ Elz{zu v;]5=ﬁ*

T(1-2v)p’ p o (1-2v

with ¢; and ¢, the velocity of the irrotational waves and equivoluminal waves, respectively.
Further, u is the shear modulus and v is Poisson’s ratio. ¢; is also the velocity of wave

(2.8a)

(2.8b)

(2.8¢)

(2.8d)

(2.8¢)

(2.8f)

propagation in a laterally constrained bar. Awojobi (1971) considered the high frequency solution

of (2.8). He showed that for the compressible homogeneous half-space

&yn) ~=if \up @y (0 <r<ro

=0 (r>rp)

with {8" = 201 - v)/ (1 -2v)}1/2,

(2.9a)

(2.9b)

so that the theory of subgrade reaction is satisfied, this in contrast with low frequency factor and static

stress contribution. Thus we have

{—a)2M° + i om rg? \/up }zbo =Py

34
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without added mass and restoring force. This result corresponds to the case in which a laterally
constrained semi-infinite rod suddenly has a velocity twy (¢ = 04) applied to the free end, because at time t =
0.+ no wave propagation can take place.

For the case of an incompressible subgrade Awojobi obtained

&) = 2 payal(r?-AV2 (0<r<r)
b1 (2.10a)

=0 (r>rg)

like in the case of deep water (compare (2.5b)). We notice that the static stress distribution is
given by

00) = 21 tro? = ),

Integration of (2.10a) over the loaded area mrg? gives ultimately rise to
* A * 4
—?(M°+M)dp=Py ,M = 3 pre® (2.10b)

For the case of an infinitely long rigid strip base of width 2dy we have for the compressible
subgrade

(a?M" + if @2dy \[up ) do = Py @11)
and for the incompressible subgrade
—PM°+ Mg =Py ,M = ’5’ pdo? 2.12)

Bycroft (1977) slightly amended Awojobi’s results. He writes for the cases of a weightless rigid
circular base of radius 7

. —PAO - fi-ify
—_— , P . 1
wo_lﬂu (fi+if2), Po= Woflz x wo (2.13a)

He shows that for large values of

{pr03a)2}1/2
ap=

1rg

(2.13b)

in the case of a compressible subgrade
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Ky 1 1

e L fy=— 2.13c
A 202 f2 o g (2.130)
with x, varies from +0.09 to +0.06 as v varies from v= 0 to v = 0.333, and in the case of an
incompressible subgrade
3 1.93
~=—fh =~ 1
f 4002 2 o (2.13d)
Thus, for the compressible subgrade we obtain (compare (2.9¢))
(M’ + imBree[up) o + (B m) 2uroreiin = Py (2.14)
and for the incompressible subgrade (compare (2.10b))
o 4 . I s T
[—a)z(M + 5 pr03) +1343 7'02 up a)]wo = PO (2.15)

For the case of low frequencies we have the following results. In the case of an incompressible
elastic subgrade the low frequency added mass of a rigid disk is about (3/2) times the high
frequency added mass, and in the case of a compressible elastic half-space the low frequency
added mass is about (1/2) times the high-frequency incompressible added mass (Bycroft (1956)
and Awojobi and Grootenhuis (1965)). In Appendix 2 the reciprocity between the corresponding

" problems of a vertically loaded rigid strip (plane strain) and a rigid disk (axial symmetric) is

presented.

The above results show that the high frequency added mass is only sigificant for incompressible
subgrades (compare Wolf (1985)).

Finally, we consider the case in which a rigid sphere of radius ry is surrounded by a compresible,
homogeneos, isotropic elastic medium of infinite extent with mass density p, shear modulus
and Poisson’s ratio v.

We suppose that the rigid sphere is subjected to a vertical centric periodic force P(t) = f’gei“’t, 50
that at the steady state the sphere undergoes a rigid displacement w(t) = wpe'®. Tt is assumed that
at the location of the surface of the sphere the displacement of the surrounding elastic space
equals the displacement of the sphere. At this location the horizontal displacement is equal to
zero and the vertical displacement is constant and equals wp. With

1-2v
2(1-v

o=

==

1/2 =
rﬁ }

o= io{(1 - 2v)p/2(1— /2, B= ialplu) =l—}

de Josselin de Jong (1956) finds that



A~

P (1 =2W[3 + 3fry + B2r¢?] + 4(1 — V)[3 + Barg + 2]}

20 = 0 T+ crg)3+ 3P0 + FPred] + 2001+ fro)3 + 3o + ol (2162)
1+arn 2(1 + Bry) :

- . +

Py = dmurguy 102 23+ 3ary + 0?r?) o 3+ 3Pry+ frro? (2.16b)

B2+ 3+ 3Bry + BPry? ﬁ2'3+3ar0+a2r02+2

Now it is noteworthy (de Josselin de Jong (1956)) that the first term between the brackets at the
right hand of (2.16b) represents the contribution I (say) of the irrotational wave (involving
dilatation and distortion) and the second term the contribution R (say) of the equivoluminal
(involving distortion and rotation) to the bearing power of the surrounding elastic space. In the
case of high frequency (I/R) = B’ /2, and in the case of low frequency (I/R) = 1/2. In soils the low
frequency (long) waves are destructive.

The classical solution to the problem of a vibrating rigid sphere surrounded by a compressible
inviscid fluid, can be discovered from (2.16b) with i =0, B — s but up? = —a?p and B 2u = E,,, the
elasticity of fluid volume (Lamb (1945) p. 510)) (term I):

130=

2 + Kry? ©red | .
4 ML 4} 2.16¢)

= 3 - +
3m0pa)2{ 4+K4TO4 14+K470

with wave number x = a/c,, wave velocity c,, = (E,/p)'/? of the irrotational waves with wave
length A =27/x.

In the cases of long waves and incompressibility (k7y — 0) there is the added mass effect

M" = (2/3)7ry®) and the damping vanishes. At high frequencies the damping dominates:

C = (4/3)mry*pcy,

Let us return to the formulae (2.16a) and (2.16b).
In the static case, @ =0,

1-v)
Py =24mury (-5—:*6*‘/—) wo (2.17a)

In the case of large frequency oscillations, i.e., @ —> oo, @ — o0 and § — o it follows that

2(1- W15

1 19 o
Py = drry? {3(1 2v) (up)2+§(up)”2}zww0 (2.17b)

with no added mass (compare (2.16c¢)).
For the case of an incompressible medium we have v= % , so that o= 0. Then the expression (2.16a)
reduces to

37



38

A

Py 6

2utg = 21109+ 9pro + Frddl (2.18a)
or

Py = % (9 + 9Bro + BroPlwy, B= itplu)!/? (2.18b)
In the case of high frequency oscillations it follows that

Py=- 2”;” 0 Fay M =T o 2.19)

3

This value of the added mass corresponds to the value of the added mass of a sphere moving
through an incompressible perfect fluid of infinite extent. In the static case, @ = 0, we have

Py = 6murywy (2.20)

The static stress distribution corresponds with the stress distribution belonging to the slow steady
flow of an incompressible viscid fluid past a sphere under no-slipping conditions. With w the
uniform fluid velocity at infinity and u the viscosity, the drag force on the sphere is given by P =
6murgw into the direction of the flow (Lamb (1945), p. 597).

We notice that at the location of a horizontal plane through the center of the rigid sphere the
stress component in the horizontal radial direction, the stress component in the horizontal
circumferential direction and the stress component in the vertical direction are equal to zero.
Unfortunately, on that plane the shear stress is not equal to zero. At that plane simple shear
occurs (compare the slow motion of a sphere through incompresible viscid fluid). However, at
large values of the frequency o this shear stress may be disregarded since it behaves as (1/ @)
when @ — o, and the stress at the surface of the sphere becomes isotropic.

As a consequence of the zero normal stresses at the location of the horizontal plane through the
center of the sphere, and the vanishing of the shear stress on that plane for large values of the
frequency, we may obtain the following result.

When a rigid hemisphere of radius 7 is embedded in an incompressible homogeneous elastic half-
space such that the upper-surface is flat (figure 1) and is loaded by a vertical impulsive force 13(t =
0) the hemisphere obtains the initial velocity

P(t=0,) = (M +M°ywy(t =0,), M° = (n/3)pr? (2.21)

For the case of an infinitely long semi-cylinder the added mass M is given by (m/2)pdo? per unit
length of the cylinder.

When we divide the left-hand of the expression (2.16a) by 2, we obtain the expression of the high-
frequency motion of an embedded hemisphere, a result that holds even as to a first
approximation for low frequencies (compare F. Medina in Gazetas (1985)).
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Gibson soil

As a consequence of the mathematical analogy between the equations of the irrotational deep
water motions and the equations of the irrotational Gibson soil motion, we have the following
results.

The high frequency isotropic stress distribution under a rigid disk (a rigid strip) at the upper
surface of the Gibson soil has exactly the same form as the pressure distribution under a rigid
disk (a rigid strip) at the upper surface of deep water (and an incompressible homogeneous
elastic half-space). Therefore, the high frequency oscillation of a rigid disk with radius 7, (a rigid ’
strip) generates a high frequency added mass M =@/ 3)pro° M = (n/ 2)prg?).

We notice that the exact solution to the rigid disk problem is given by Awojobi (1973) and
Kruijtzer (1976):

oo

—do.o(s)‘]0 (s7) Fds=-wy (0<r<n)

0 (pg+2m)— P2
S

S0 = [Bo(s)sip(srds =0 (2 ny)
0

with 50 (s) the Hankel transform of Gy(r) (compare (2.7a)). (Awojobi did not take the gravity
into account). The upper limit of the low frequency added mass is given in Appendix 3.

In a recent paper (Kruijtzer (2001)) we have considered the case in which a semi-spherical (or
-cylindrical) rigid punch is pressed against the upper surface of a Gibson soil in such a way that
the resulting upper surface including the punch becomes flat. At the location of the deformed
upper surface the shear modulus is equal to zero, but the stress at this location is not isotropic. In
the linearized theory the principle of stress superposition is valid.

When we require that at the location of the surface of the hemisphere (semi-cylinder) the
displacement of the Gibson soil is equal to wy(t) we have for large frequency factors the added
mass (1/3) n'pr03 for the hemisphere and the added mass (7r/2)pd02 per unit length for the semi-
cylinder with an isotropic stress at the surface of the hemisphere or semi-cylinder.

rigid punch

undeformed deformed
l X l Xy

Figure 4. Pressed rigid punch.

Water saturated porous elastic space
It is assumed that the porous elastic space is homogeneous and isotropic. Further, it is assumed
that the solid material behaves as being perfectly rigid under action of the all round water
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pressure. In the fully undrained state the solid and the water possess equal velocities. The velocity
¢; of the irrotational waves and the velocity c, the equivoluminal waves are given by

B2+ Ey/n |2 { u }1/2
a= (1-n)ps+np,) 2= (1 -n)ps +np,,

with 7 the solid porosity, p, the solid mass density, p,, the water mass density. Further, E,, is the
elasticity of water volume, p is the solid shear modulus and ﬁ*zu the elasticity of a laterally
constrained solid volume.

When it is assumed that the water is incompressible, the undrained composite behaves as being an
incompressible elastic space. High frequency vibrations generate added mass showing that high
frequency pile driving is useless (de Josselin de Jong (1956)).

In the fully drained state there is no excess of water pressure and the elastic composition behaves
as being an elastic space. It should be noticed that the fully drained and undrained states must be
satisfied on the boundary.

Concluding remarks

The linear analysis of some footing and floating body problems shows the correspondence
between the high frequency added in-phase subgrade masses for the cases of deep water, a
Gibson soil and an incompressible homogeneous elastic half-space. High frequency states may
occur when the rigidity of the subgrade is small, the dimensions of the loaded surface area are
large, the weight of the foundation is large or the frequency input is high such as occurs on
impact, blast loading, vibrating machines, the deceleration of bodies hitting the ground, high
frequency components of earthquakes and running on a thin ice layer. With an increase of
frequency of a surface loading the depth of penetration of resulting effect in the subgrade
decreases. Furthermore, in the case of large frequency factors, an increase of compressibility of
the subgrade decreases the effect of added mass and increases the effect of damping.
Furthermore, in the case of high-frequencies the compressible subgrade reacts like a uniform bed
of dashpots.

In the presentation of the solutions to different cases involving the motion of a rigid mass M°
connected with a massless Kelvin-Voigt element with spring constant K and the damping
constant C, it is conventional to use the dimensionless parameters C/C, and w/®,. Here @, is the
eigenfrequency in the absence of damping, @, = (K/M°)*/? and C, is the critical damping,

C, = 2(KM°)!/%, The parameters separate the effects of damping and frequency, but it is
cumbersome to determine the effects of changes in M° and K. Lysmer (Richart, Woods and Hall
(1970), p. 31) separated the effects of mass and frequency by introducing the dimensionless

parameters
_, @C - MK _ | M@ o
ap” = Kz r 0= CZ ;baO = K =F (313)

In the theory of vertical oscillation of footings with circular base resting on the surface of an



(incompressible) homogeneous elastic half-space the dimensionless parameters

- pry’ M°
2 _ =
ag” = uro , bo _pr03 (31b)

appear in a natural way, with g is the dimensionless frequency and b, is the mass ratio.
In the case of a Gibson soil we introduce the dimensionless quantities

ro° @ M
P o (3.10)

2 =—2, bo =
(pg +2m)ry pro

Up

with 7, the radius of the loaded area.

In the rather extensive litterature the differential equation of the vertical motion of a rigid footing
with a flat circular base of radius r, attached to the horizontal upper surface of a compressible
homogeneous isotropic elastic half-space is presented in the form (Richart et al (1970), p. 208):

2
. . 4
(e + M)iAt) + % i wit) + 1MTr0v w(t) =Py(t), 0<ap<1 (3.2a)

so that for the case of an incompressible half-space
(M® + Miing(t) + 6.92r¢\[p w(t) + Burgwy(t) = Polt) 0 <ap<1 (3.2b)

With Po(t) =Py ¢ and wy(t) = @ye’® the equation (3.2b) reduces to the steady state equation of
motion

~P(M + M )iy + i 6.92 ro?\[up @y + Buriy = Py, 0< ag < 1 (3.20)

Our collected and derived results show that these lumped equations are not valid in the case of
high frequency factors. In the case of a compressible subgrade the damping term is dominant and
in the case of an incompressible subgrade the mass term is dominating at large forced
frequencies.

We notice that for values of (((1 - v)by/4) > 2 the equation (((1 — v)by/4)ay> = 1 determines with
sufficient accuracy the value of the resonance frequency @,. Further, we notice that the
equalization b=by(1-v)/4and 4y = ay (compare (2.1a) and (2.1b) gives rise to an indication of the
value of the damping coefficient.

In the subjoined table the results of this treatise have been summarized. It should be noticed that
the displacement @ye’® due to the additional loading Pye® must be added to the initial static
diplacement due to the own weight (and other initially static loadings) of the footing or the
floating body. Further, it should be noticed that the given low frequency added mass represents
only an indicative estimation. The corresponding plane strain (2D) results may be found in the
text.

41



Table. Summary of the results.

Vertical motion of a footing or floating body with mass M°:

(M® + M) i (t) + C dop(t) + K wo(t) = Po(t)

= coefficient of restoring force

with Po(t) =P, w(t) = ipe'™ —aP(M° + M (@))by + i @ C(0) @+ K(w) @o= Py
M, M'(w) = added mass; C, C(w) = coefficient of geometrical damping (wave radiation); K, K(e)

Reaction of a homogeneous, isotropic, elastic half-space;
shear modulus p, Poisson’s ratio v, mass density p.

incompressible compressible B = {2(1 - V)}I/Z
(1-2v)
ky<0.1
weightless disk M = (4/3) pry® M =0
high frequency C=343 7’02% C=nfry \/;;
K=0 K = k7)) pro
weightless disk M =(3/2)(4/3) pr® M =(1/2)4/3)pr  (v=0)
low frequency C=692r2\[up C=346r\up (v=0)
K = 8pur, (static) K = 4ur (static) (v=0)

weightless hemisphere
high frequency

M =(n/3) pry?

C=37rr02\/E

K=0

M =0
C = @n/3)rX(B" + 2)\up
K=0

Reaction of deep water; mass density p, acceleration due to gravity g.

weightless disk (shallow

M = (4/3) pro®, M® = prrg?-h, h draft of pontoon at rest

pontoon) C=0
high frequency K=0
weightless disk (shallow M = (3/2)(4/3) pr®, M° = prrg®-h
pontoon) C=0
low frequency K=mry? pg
hemisphere M’ = (n/3) pro®, M° = 27/ 3)pro®
high frequency C=0

K=0
hemisphere M =(3/2)(r/3) pro3, M° = (21/3)pry®
low frequency C=0

K= mro*pg

Reaction of a Gibson soil;

shear modulus m times depth, mass density p.

low frequency

weightless disk M =(4/3) prg®
high frequency C=0

K=0
weightless disk M’ =(3/2)(4/3) pre’

0
o

C
K = mrg® (pg + 2m)
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pressed hemisphere M’ =(x/3) pry’

high frequency C=0

K=0

Added mass, coeffcient of geometrical damping and coeffcient of restoring force for the
additional vertical motion of footings and floating bodies, which motion should be added to

the static initial state.

Our results hopefully bridge the gap between the mechanics of deep water and of an elastic
substratum, and the gap between low frequency and high frequency problems with respect to the
compressibility of the substrata.

Appendix 1

G.N. Bycroft (1956) showed that in the case the upper surface of a homogeneous incompressible
isotropic elastic half-space is subjected by an almost uniform displacement over a circular loaded
area with radius r,, the relationship between the exciting force P(t) = Pei® and the vertical
displacement w(t) is given by

D it

w=w(t)=-

(f1 +if2) (a.1.1)

uro

where fi and f; are two functions of frequency being effectively the in-phase and out-phase
components of the displacement w of the weightless disk of radius 7 (figure a.1). In the case of
very high frequencies @ (Awojobi (1971), Bycroft (1977)):

weightless _ p it

1.0 rigid circular | P=Pe
1)
c
S -8f
Q
c
=
ot P
8
Ex 3

0.5.1 7
8'0 ﬂoq =p—0 a)2
@ c
a6 Hro
e 8f,
— N .
T f,ez(ut

w= (i +if2)
0.2 | |
Hry
C—~— _\ — — - compressible subgrade
0 N\ I ap
=025

1.2 3 4 5 6 7 8 9 10
dimensionless frequencyag

Figure a.1. Displacement functions f; and f, for the homogeneous incompressible isotropic elastic half-space
(rough indications after Luco and Westmann (1971)).
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f urg I; 1.93
= , 2=
! %prog’a)z ro> @ (plu)>*

or with

ag=ro(@~ p/u)

3 1.93

f1z4u02’ fzz tl03

It is noticed that the asymptotic expression of f, has been given by Bycroft (1977).

Further, in the static case, i.e. @ = 0, we have

We notice that f; changes the sign for large values of 4.

(a.1.2)

(a.1.3)

(a.1.4)

(a.1.5)

For the case in which a mass M° is attached to the weightless rigid disk, Bycroft derives that the

vertical displacement w = w(t) of My is given by

Pe™ (1 + boaph) - iboag’h)
uro {(1+ boag?)? + (boag*H)?)

w=w(t)=+
with

bo=—%
0 pro’

so that the amplitude A of My is given by

2 -

uro (1 + boag?)* + (Boag®h)?

and the phase angle ybetween exciting force Pe and w(t) is given by

__h
w_flz + boao® (2 + f27)

The average power input is given by

W= P 2 { an 2 }
2,2\ L1+ boag*)? + (Boao’f2)

e

(a.1.6)

(a.1.7)

(a.1.8)

(a.1.9a)

(a.1.9b)



In the case of very high frequency factors the expression (a.1.6) reduces to

pe®t 1 Pé®  q

w=w(t) = = . (a.1.10)
TR RN ST
In the expression for the static displacement
P
wg = +8Wo (a.1.11a)
we may read
K, -ws,=+P, K,=38ur, (a.1.11b)

with K is so-called spring constant. When a mass M° is attached to a weightless spring with
spring constant K, the natural circular frequency ®, of the vibrating system is given by

, K, 8urg 8w payry’

O TM T My bea2t T g (a.1.12a)
so that
8 My
bo= al  pry (a.1.12b)

For large values of by, the values of the resonant frequencies for a mass-elastic half-space-system
become identical with those given by the simple theory of lumped mass-spring-system (Jones
(1958)).

Appendix 2. Reciprocity plane strain/axial symmetry

When a solution to an axially symmetric problem is presented in terms of a Hankel transform

A = [ ) 11(r09) Jotrs) ds
0

the solution of the corresonding plane strain problem is given by the Fourier transform
2
A(r) =— J. @ sin(ros) cos(rs) ds

7ry
0

with 7 the radius of the disk or the half-width of the infinite strip that is loaded (McNamee and
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Gibson (1960)).

Appendix 3. Upper limit low frequency added mass

When the upper-surface of deep water of the Gibson soil is subjected to a uniform normal stress

—go = € over a circular area of radius r,, the vertical displacement wq(r) =@(r)e” of a point
of the upper surface is given by Kruijtzer (1976, and Appendix 2).
N . ¢ s]{ros) Jo(rs)
(pg + 2m) @y(r) = qoroj% ds (a.3.1)
05—
pg+2m
For small @ the contribution to the integral from the pole may be neglected, and
(pg +2m) &) = oo | Jiros) Jotrs) {1+ Dids (a32)
o7 | Jiros) Jo pg +2m s -3.
0
for small ((paPro)/ (pg + 2m))*/%.
It follows
X . parry 2
(pg +2m) y(r) = 110(1 + pg+2m ”E(r/ro)) (a.3.3)
with
n/2
P2
E(rirg) = [ (1~ sin%g)"%dg, E(0) = /2, E(1) = 1 (a3.4)
0

0

so that the maximum displacement occurs at the center. The average added mass M ’ equals
2(4/3)pry>, being the upper limit of the low frequency added mass under a rigid disk, follows
from integration of (3) with respect to r:

Py = g% = {(pg + 2m)mre? — 2 (4/3) pry® @Y oy (a.3.5)

with ((pa?r)/ (pg +2m)' /%) < 1.
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