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In this paper, elastic interactive local buckling formulas of box and channel sections are
established according to the classic plate stability theory. The restraint effects of adjacent
plate elements on the bearing capacity of cross-sections are studied and the corresponding
formulas of the restraint coefficient are derived. The effective thickness method is then
modified to calculate the ultimate strength of box and channel sections, which is adopted by
current codes of various countries. Non-linear finite element analysis is carried out and its
results are compared to that of the modified method presented in this paper. It is found that
the plate assembly restraints have an obvious influence on the bearing capacity of box and

channel sections. The modified method of this paper can lead to safe results in most cases.
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1 Introduction

One of the main advantages of aluminium profiles is the possibility of forming any shape
due to the hot-extrusion molding process, in comparison to steel profiles that are made by
hot rolling, welding, or cold forming processes. Due to the higher material expenses,
aluminium profiles are often designed to be economic by adopting thinner and weaker
plate elements. Moreover, aluminium has a small elastic modulus which is about one third
of that of steel. These aspects make that local buckling is the dominant failure mode of
aluminium profiles. In this paper, the effective thickness method is adopted according to
Eurocode 9 [1] and the Chinese code GB50429 [2], in which the post-buckling strength of a
section is considered by using an effective section instead of the true section. In calculation
of the effective section the restraints between adjacent elements are not ignored. In this

paper these restraint effects are investigated and a modified calculation method for
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effective sections is provided. A similar method has been adopted as in some design codes
for cold-formed steel structures with sections of equal thickness [3], however, in this paper

plate assemblies of different thicknesses are considered too.

Effective section calculation of compressed plate elements in EC9 and
GB50429

In the codes EC9 [1] and GB50429 [3], the post-buckling strength of plates is utilized by
introducing effective sections instead of whole sections in calculating the strength and
stability of members. For example, the stability equation for axially loaded columns in EC9

is as follows.

Ny ra =K¥A 5 Jo2 ! Van @

where K is the heating influence factor due to welding. y is the overall instability
coefficient. 4 18 the effective area considering local buckling.

In GB50429 the equivalent formula is
N =10, 01 Af0s | Ve @

where 77, , @ and 7],A are corresponding to X', ¥ and A, of Equation 1, respectively.
Due to the complexity of aluminium extruded profiles, EC9 and GB50429 adopted the
effective thickness method instead of the effective width method to calculate the effective
area. Figure 1 shows the effective sections of a flexural member by effective thickness
method and effective width method, respectively, where the part enclosed by solid lines is
the effective area. It can be seen that there is a certain difference between the cross-section
bearing capacities obtained by the two methods because the sectional parameters including

the neutral axis location and effective section modulus are different [4].

]
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Figure 1: Effective thickness method (left) and effective width method (right)
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Although the expression of the effective thickness reduction coefficient p_ in EC9 is
different from that of the effective width reduction coefficient p in EC3 [5], they are
derived from the same theory and thus equivalent for none-welded aluminjium sections.
According to the test work of Winter et al. [6 <is not referring to the paper of Winter et
al.>], the effective width reduction coefficient of a plate simply supported along two

longitudinal edges can be written as

e %(1_0.415 /05,.]:1[1_0,221] 3)
Joa c Joa A A

where 0, is the critical buckling stress, f, , is the nominal yield strength, ¢ = ﬂ'/ 1/3i1 -y’ i,

and v = 0.3 is Poisson's ratio. 1 is the non dimensional slenderness of the plate,
T Jor _ 20-v? 2f0_z= /@ 12i1—v2i£ @)
o, knEt? E kn* €

where E is the material elastic modulus, k is the element buckling coefficient, ﬂ = b/ tis
the width-thickness ratio of the plate, and & =,/250/f,, -

Equation 3 is the basic expression used to calculate the effective width in EC3, and the
1 0.22

calculation formula of effective thickness in GB50429 is Ze. = =—0,——
=2

which is identical to Equation 3. For stiffened plates with four simply supported edges [1],
is obtained 1=0.031 ﬁ by introducing k = 4, E = 70000 N/mm?, v = 0.3 into Equation 4,
13

and then from Equation 3 is obtained

pczgzﬁ_ 2202 ®)
t Ble (Ble)

For non-stiffened plates with three simply supported edges and one free edge [1],
k =0.425, is obtained similarly

p=le 1024 ©)
t ple (Ble)

Equations 5 and 6 are for calculating the effective thickness of non-welded plates in EC9.
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Both in EC9 and GB50429 cross-sections of stiffened plates and non-stiffened plates are all

treated as independent elements and restraint effects are ignored.
Calculation of restraint coefficients between adjacent plates

The Levy solution [7] for uniformly compressed rectangular plates with simply supported
edges is adopted to derive the restraint coefficient of an assembly of plates with different
widths and thicknesses in box and channel sections. Taking k, as the buckling coefficient of
an independent plate element, k as the interactive buckling coefficient considering plate

assembly effect,
v =k/k, )

is defined as the restraint coefficient. Then we can write the buckling stress of plate

considering the interactive effect of plate assembly as

wk, 7’ E ®)

(o3 =
T 12(=v? bty

When buckling occurs under uniform compression, the flange and web in a section will

have the same magnitude of buckling stress [8], i.e.

0, =i [tj: Lt () ©
T 20-v ) h) T 120-v2) b

where?, and? s are the web thickness and flange thickness respectively. hand b are the

web width and flange width respectively. k and k ,are the interactive buckling

coefficients of web and flange respectively, which will have the following relationship

k, =k, [9 (ifj (10)

Denoting k, ,and 0 the buckling coefficients of the web and flange as independent

plates ignoring the interactive effects of plate assembly, we can obtain the restraint
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coefficients of the web buckling and flange buckling as y, =k, /k,, and v, =k, / k. 0

respectively. Equation 11 can be written as

WY (1Y
Yk = Wfkf() (b) (l‘/] 11)

W

3.1 Buckling of box sections considering the interactive effects of the plate assembly
Figure 2 shows the analysis model of a box-section stub under uniform compression.
According to the buckling theory, local buckling of the section has the following features
91,

a) Buckling of all plates in a section happens simultaneously;

b) The connection edges between adjacent plates is straight before and after buckling;
c¢) The angle between adjacent plates is a right angle before and after buckling;

d) The plates in a section will have the same buckling half-wave length;

e) Any point in the connection edges between adjacent plates will have the same value

of stress or angular rotation of the two plates.

‘ .

Figure 2: Analysis model of a box section stub

Taking the x-axis of the plate along the longitudinal loading direction, the y-axis as
transverse sectional direction and its origin at the symmetric middle centre, shown as in

Figure 2, we can express the buckling deflection equations of the flange and web as,

N

Wi :Sianﬂ-xZEaYm (yi) (12)
n=1

T, (y) =4;cosha,y+C, cos fy (13)
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04={/1,,12+/1,,1,/]V""} : ﬁf={—&n2+ﬂn1 N} (14
D D

Here, A =mz/l in which m is the number of buckling half-waves along the loading
direction and [ is the plate length. N _. = ¢ ¢, in which the flange is marked asi =1 and
the web is as i = 2, where o, is the buckling stress of the section. D =Ef / 1 2(1 - 1/2) is the
bending stiffness of plates where t is the plate thickness. 4, and C, are undetermined

coefficients, and F, is deflection amplitude coefficient.

Equations 12-14 are from the Levy solution of the partial differential equilibrium equation

9w d'w  d'w) o,t Iw
—_— + + —_— P ———
axt T ox*oyt oyt D ox
and thus the buckling load N, can be found from the following boundary conditions [7]:

¢ for elastic buckling plates. The unknown factors

Wilyes =0 4 cosha,(—b,)+C, cos B(~b)=0 (15)
Wy, =0 Aycosha,b, +C,cos fb, =0 (16)
My =

ayl n=-h ay2 Y2=by

Ao, sinha,(~b,)—C,B sin B,(~b,) = 4, sinh a,b,~C, B, sin ,b, =

Ao, sinh b, — C, B, sin Bb, + 4,0, sinh a,b,—C, 3, sin B,b, =0 17)

_ ’w R
My ni==b My ya=by and ale |y|:—b. = axzz yy=by, — 0o =
’w, _ 9w, =

Aa’ coshar(=b,)—C, B cos B(~b,) = A,ex,” cosha,b, —C, B,” cos f,b, =
Aa’ coshah, —C 37 cos b, — A,at,” cosh a,b, +C, 8, cos B,b, = 0 (18)

A non-zero solution of w requires non-zero values of 4,,C,, 4,,C, . It means that Equation

19 should be satisfied from Equations 15-18.
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cosha,b, cos b, 0 0
0 0 cosha,b, cosfb, | 0 (19)
oysinhah,  —BsinfBb  a,sinha,h, —fB,sinfb,
o’ coshah, — B’ cosfBb, —a,’ cosha,h, B, cosfB,b,

Providing some parameter values of the plate element geometry, the transcendental

Equation 19 can be solved by mathematic software. The buckling stress ¢, can be obtained

fromal,ﬂl,az,ﬂz.

3.2 Buckling of channel sections considering the interactive effects of the plate assembly

Figure 3 shows the analysis model of a channel section stub under uniform compression.

low

b2

wl

Figure 3: Analysis model of channel section stub

Taking x-axis as longitudinal compression direction, y-axis as transverse sectional
direction, the origin of y-axis in the web at its symmetric center, and the origin of y-axis in

the flange at its connection edge with web, we can express the buckling deflection as,

N
w=sin S R, (3) (20

m=1

For flange,

Ylm(y) =4, coshayy+ B sinheyy +C cos By +E sin By (21)
For web,
Y, (y) = Az cosh oa,y+ Cz cosﬂzy (22)
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where 4,,B,,C,,E,, 4,,C, are undetermined coefficients and the parameters €; and ,Bl.
are defined as in Equation 14.

Equations 20-22 satisfy the partial differential equilibrium equation of elastic buckling

2
plate, ie. v2y2y,+ ot a_vzv = (- The boundary conditions are as follows [7],
X

" n=0 =0 =
4+C=0 =
C =—4 (23)
Wa |y, =0 =
A, cosh a,b, + C, cos f,b, =0 (24)
L e

an, 1770y, 1
B, + E B, = 4,0,sinh a,b, — C, B,sin f,b, =
B, + E B, — A,a, sinh a,b, + C, 3, sin ,b, =0 (25)

- 9*w 9’w

My n=0 = My V2=by and ale ‘)’FO :?22 ya=by T 0 =

9’w, 9w, =

ay12 »=0 ayZZ y2=b,
Ae’ -C B = 4, cosha,b, —C, B,  cos Bb, —=>
A (af +ﬂ12)— A, cosha,b, +C,B,” cos B,b, =0 26)
M yln=h = 0 =

=

n=b

9’w, ‘v 9’w,
aJ/lz o

A (0{12 -vi’® )cosh b, + B, (0(12 VA’ )sinh ab, —C, (ﬂlz +vA,’ )cos Bb,

-E, (ﬂlz +1::1mz )sin,Blb, =0 =
A [(0{12 -, )cosh ob, + (,H,2 +vA,’ )cos Bb, J+ B, (0{,2 -vA’ )sinh ab,

—E(8? +v4,)sin Bb, =0 @7)

M

¥x

=0 and Qy Ji=h, =0 =

n=b
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n=b = 0 =

oM
[Qy _M»j
ox

’’w, *w —
2— L =0
[ v, + )axza JM-I’I

Aol - (2-v)A, [sinh b, + Baylag? = (2-v)A,* Jeosharp, + C 8|87 +(2 )4, Jsin 8o,

~EAlB+ @4, s po=0 =
Alesleg? - (@2-v)A,? Jsinh e, - BB7 +(2-v)4, |sin B, |+ By oy —(2=v)A, [cosh e,

—-Ep |ﬂ12 + (2 - V)ﬂmz JCOS Bb =0 (28)

Equations 24-28 are linear equations of 4, B,, E|, 4,,C, , and Equation 29 can be obtained

from its non-zero solution requirement.

0 0 0 cosha,b, cosf,b,
0 o B —a,sinha,h, B, sinf,b, (29)
o'+ 0 0 —a,’ cosha,b, 3, cosB,b,|=0
@ coshayb, + ¢, cos fb, @ sinhayb, —@,sinfh 0 0
o, sinhoyh, — B, sin b, oy coshayh, — B, cos Bb, 0 0
Where ¢ = Vﬂ’m 9, = ﬁlz + Vﬂ’m2 P = alz - (2 - V) m Do = ﬂl ( ) 4,

The buckling stress ¢, can then be found from the solution of @, 5,,a,, /3, of Equation

29.

3.3 Formula for restraint coefficient of plate assembly

The critical stress O, of a compressed box or channel section stub can be solved based on
the descriptions before. From O, the interactive buckling coefficient and the restraint
- 120=v)(B/t) .
coefficient can then be found as  — e and = k/ k. , respectively.
cr
T
Further analysis proves that the interactive buckling coefficient does not depend on the
material elastic modulus and the strength, and depends only on the width ratio b/h and
the thickness ratio ¢ ; / t, of the sections. For uniformly compressed boxes and channel
sections with the same plate thickness the web interactive buckling coefficient k£ can be

derived and expressed as (see BS5950 [3]),

for box section:

- _ Zb/h _ 3 (30)
k=T 0.11+b/h 1.2(b/1)
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for channel section:
2 N 2+4.8b/h 31)

J1+15(6/n)  1+15(b/h)

The flange interactive buckling coefficient k, can be calculated from k¢, by Equation 10.

Taking an aluminium box section and a channel section stub with the parameters listed in
Table 1 under uniform compression for example, we can obtain its relationships between
the restraint coefficient y/ and the width ratio b/h when ¢ = t,,, as shown in Figure 4.
Here, m is the number of buckling waves. The results from Equations 30 and 31 of BS5950
and from the equations stated before are plotted and compared. In Figure 4 the horizontal
line g/ =1 means the buckling of independent plates ignoring interactive effects of the
plate assembly. It can be seen that the results from BS5950 and from the equations stated

before coincide with each other.

Table 1: Size and mechanical properties of aluminium section stub

Restraint coefficient W

Section type Web width ~ Web thickness  Gtyb length ~ Elastic modulus ~ Poisson's
h (mm) ¢, (mm) [ (mm) E (N/mm?) ratio V
Box section 180 4 720 70000 0.3
Channel section 180 4 720 70000 0.3
1.75
2.50
S m=3 , 180 m=2
= = | m=3
200 2;51 T —— m=4
——Eq.(30) 2 —— Eq.(31)
150 - g 100
N 5
O o075
1.00 g
S % 050 \\
: 8 Q G
050 A i T oz e \\
A
0.00 Y 0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Width ratio b/h Width ratio b/h
(a) Box section (b) Channel section

Figure 4: Influence of element width ratio on restraint coefficient
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tw

Restraint coefficient W

For box sections with the same width of the web and flange, the relationship between the

restraint coefficient y, and the plate thickness ratio ¢ , / t, can be expressed as

1.16 (32)

~1.34-
Vi 1+237(, /i, )

For channel section where the web width is twice of the flange, the relationship between

the restraint coefficient y, and the plate thickness ratio ¢ , /tw can be expressed as

~145 1.41 (33)

~1.45-
Vo 1+0.9( S/t P

Equations 32 and 33 are approximation formulas obtained by parameter fitting from the
theoretical equations stated before in Section 3.1 and 3.2. Figure 5 gives the relationship
between v, and t / t, of the two stubs with the parameters listed in Table 1. The
comparison between the results from Equations 32 and 33 and theoretical equations is also
made. Following 1, we can find the other coefficients suchas k =k, -y, andk . from
Equation 10. For general sections with different values of the width and thickness of web
and flange, the restraint coefficient can be approximated get by interpolation in Figure 6 or

in Table 2 and Table 3.

1.40
2.00
120 o as
1.00 g 150
S
= g
0.80 / T i
3] /
0.60 < 7
‘© / —————————— m=2
=4 =050
0.40 % m= 2 m=3
/ """"" m=5 o — m=4
i B Ea.(32) ——Eq(33)
0.00 : i T
0.00 050 1.00 150 2.00 0.00 050 1.00 1.50 2.00 250
Thickness ratio tth Thickness ratio t/tw
(a) Box section (b) Channel section

Figure 5: Influence of the element thickness ratio on the restraint coefficient
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Restraint coefficient W
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Figure 6: Influence of the element width ratio and the thickness ratio on the restraint coefficient

Table 2: Restraint coefficient Y of box sections

Width ratio  Thickness ratio t / t,

b/h 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

0.10 1.519 1.519 1.519 1.519 1.519 1.519 1.553 1.611
0.20 1411 1.416 1.417 1.418 1.418 1.418 1.440 1.496
0.30 1.334 1.354 1.360 1.363 1.364 1.365 1.381 1.429
0.40 1.246 1.305 1.322 1.329 1.333 1.335 1.346 1.395
0.50 1.108 1.252 1.290 1.305 1.313 1.317 1.324 1.364
0.60 0.885 1.183 1.257 1.284 1.298 1.305 1.315 1.346
0.70 0.658 1.084 1.217 1.264 1.285 1.297 1.307 1.335
0.80 0.505 0.951 1.164 1.241 1.274 1.291 1.302 1.330
0.90 0.400 0.807 1.092 1.212 1.261 1.285 1.299 1.330
1.00 0.324 0.678 1.000 1174 1.247 1.279 1.297 1.328
1.10 0.268 0.572 0.896 1121 1.228 1.273 1.295 1.326
1.20 0.226 0.488 0.793 1.052 1.201 1.266 1.294 1.324
1.30 0.193 0.420 0.700 0.971 1.162 1.255 1.293 1.323
1.40 0.167 0.365 0.618 0.885 1.108 1.239 1.291 1322
1.50 0.145 0.320 0.547 0.802 1.040 1.211 1.288 1.321
1.60 0.128 0.283 0.487 0.725 0.965 1.166 1.282 1.320
1.70 0.114 0.251 0.436 0.656 0.890 1.107 1.266 1.320
1.80 0.102 0.225 0.393 0.595 0.818 1.039 1.227 1.319
1.90 0.092 0.203 0.355 0.541 0.751 0.969 1172 1.318
2.00 0.083 0.184 0.322 0.493 0.690 0.900 1.108 1.289
2.10 0.076 0.167 0.294 0.452 0.635 0.835 1.042 1.236
2.20 0.069 0.153 0.269 0.415 0.585 0.775 0.976 1.173
2.30 0.063 0.141 0.248 0.382 0.541 0.720 0.913 1.109
2.40 0.058 0.130 0.229 0.353 0.502 0.670 0.853 1.045
2.50 0.054 0.120 0.212 0.327 0.466 0.624 0.798 0.983
2.60 0.050 0.111 0.196 0.304 0.433 0.582 0.747 0.924
2.70 0.047 0.103 0.183 0.284 0.405 0.544 0.701 0.870
2.80 0.044 0.096 0.171 0.265 0.378 0.510 0.657 0.818
2.90 0.041 0.090 0.160 0.248 0.355 0.478 0.618 0.771
3.00 0.038 0.084 0.150 0.233 0.333 0.449 0.581 0.727
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Table 3: Restraint coefficient Y of channel sections

Width ratio  Thickness ratio t / t,

b/h 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.05 1.041 1.060 1.063 1.064 1.065 1.065 1.065 1.066 1.077 1.104
0.10 0942 1.079 1.104 1112 1116 1.119 1120 1.121 1129 1.152
0.15 0.652 1.035 1.114 1.140 1.152 1.158 1.162 1165 1172 1.196
0.20 0372 0913 1.088 1.147 1172 1185 1.193 1198 1.205 1.233
0.25 0239 0.731 1.023 1132 1178 1201 1214 1222 1234 1.265
0.30 0.169 0552 0915 1.095 1.171 1208 1228 1.240 1.255 1.281
0.35 0.125 0419 0782 1.030 1151 1.207 1.236 1.252 1.267 1.300
0.40 0.098 0326 0652 0939 1113 1198 1.239 1.260 1278 1314
0.45 0.078 0260 0541 0.833 1.055 1.179 1237 1266 1286 1.325
0.50 0.064 0212 0452 0728 0975 1145 1231 1269 1.293 1.333
0.55 0.054 0177 0382 0.632 088 1.091 1217 1270 1297 1.337
0.60 0.045 0149 0326 0550 0.794 1.019 1187 1269 1300 1.337
0.65 0.040 0128 0281 0481 0.708 0.937 1134 1.262 1303 1.339
0.70 0.035 0.111 0245 0423 0.632 0.854 1.064 1.234 1304 1.342
0.75 0.031 0.097 0216 0374 0565 0775 0987 1179 1305 1.344
0.80 0.027 0.086 0.191 0334 0507 0703 0909 1109 1.283 1.346
0.85 0.025 0.077 0171 0299 0457 0.638 0835 1.035 1.223 1.347
0.90 0.023 0.069 0154 0269 0413 0581 0.766 0960 1.153 1.329
0.95 0.020 0.062 0139 0244 0375 0530 0.703 0.889 1.080 1.264
1.00 0.019 0.056 0126 0222 0343 0485 0.647 0.823 1.008 1.193
1.05 0.017 0.051 0.115 0.203 0314 0446 059 0762 0939 1.121
1.10 0.016 0.047 0.105 0.186 0.288 0410 0551 0.706 0.874 1.051
1.15 0.016 0.043 0.097 0172 0266 0379 0510 0.656 0.815 0.985
1.20 0.016 0.040 0.090 0159 0.246 0351 0473 0.610 0761 0.922
1.25 0.016 0.037 0.083 0147 0228 0.326 0440 0569 0711 0.864
1.30 0.016 0.034¢ 0.077 0137 0213 0304 0411 0532 0.665 0.810
1.35 0.016 0.032 0.072 0.127 0.198 0284 0384 0497 0.623 0.761
1.40 0.016 0.030 0.067 0.119 0.185 0266 0360 0466 0585 0.716
145 0.016 0.028 0.063 0.112 0.174 0249 0338 0438 0551 0.674
1.50 0.016 0.026 0.059 0.105 0.163 0234 0317 0412 0518 0.635

3.4 Formula of effective thickness considering restraints of adjacent plates

Based on the above discussion, the restraint coefficient of web can be obtained.

Substituting k = ik, into Equation 4, we can obtain the plate slenderness considering the

plate assembly effect as
.

where ,TO is the slenderness of an independent plate. Substituting Equation 34 into

N

(34)

Equation 3, we can write the reduction coefficient p’ of the effective thickness considering

the plate assembly effect as follows,
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oy T 020y (35)
W A, —0.22 P

For stiffened plates, kq = 4, substituting Equation 4 into 35 we have

Ble-Tw
RG ple-1 °

For non-stiffened plates, k() =0.425, substituting Equation 4 into 35 we have

g Ble-24y e

ple-2.4 P

where, p_is the reduction coefficient of an independent plate, expressed by Equations 5

and 6.

Finite element analysis and comparison of bearing capacity of an
aluminium stub

In order to verify the calculation method for the ultimate bearing capacity of the box and
the channel section short stub, the finite element software ANSYS has been adopted, in
which SHELL181 element suitable for material nonlinearity and large deformation analysis
is used and initial imperfections are taken into account. The Ramberg-Osgood stress-strain
constitutive law is adopted (Eq. 38), which has been accurately approximated by more than

20 stress-strain points and linear interpolations.

=94 o.ooz["]" p=— 2 (38)
E Joz In( £, /fo,l )

In this, £ is the initial elastic modulus, f, , is the stress corresponding to residual strain
€0 = 0.001. The maximum amplitude of the initial geometric imperfection is taken as

1/200 of the plate width and in the form of the first-order buckling mode.
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Table 4: Mechanical properties of the box section and the channel section stub

Section type Alloy grade E (N/mm?) fo,MPa)  f (MPa) p
Box section 6061-T6 70000 240 285 35
Channel section 6061-T6 70000 240 285 35

Table 5: Dimensions of the box section and the channel section stub

Web width ~ Web thickness Flange width ~ Column length

Section type h (mm) t, (mm) b (mm) I (mm)
Box section 180 4 180 765
Channel section 180 4 90 765

The thickness of the flange has been changed to vary the thickness ratio I / t, ,and the
ultimate bearing capacity P, of web is computed by the FEM software. The reduction

coefficient of web can be expressed as

p=— =t 9)

- Avtvfg).Z - htwf(\).l

Figure 7 shows the result of p of Equation 39 and p: of Equation 32, 33 and 36. It can be
seen that, due to the plate assembly effect, p, may be less than p, ; when flange thickness is
less than the web thickness, where p,  is the reduction coefficient from Equation 39 when
flange thickness and web thickness are equal. This shows that Equation 5 used in EC9,
which ignores the weakening effect of the flange to the web, may lead to unsafe results.
Figure 7 shows that the proposed formulas in this paper considering the plate assembly
effect can basically reflect the bearing capacity variation of the plate with changing of the

adjacent plate thickness, and in most cases they can lead to safe results.
Conclusions

Aiming at the local buckling capacity, considering plate assembly effects, this paper
derived the formula for calculation of the restraint coefficient of box and channel sections
with different values of plate width and thickness. This restraint coefficient can be easily
introduced to the effective thickness formula in the current design codes for aluminium
structures so that the plate assembly effect on the local buckling of plates in sections can be

taken into account.
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Figure 7: Comparison of the results obtained by the finite element method and the proposed formula
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