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Fatigue of bridges with a horizontal 
rotation axle under random wind load 
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TNO, the Netherlands 

The operating mechanisms of movable bridges are subjected to various types of fluctuating 

loads which may induce fatigue damage. Wind load acting on the bridge deck – when the 

bridge is open – is one of the important load types. A wind load model is proposed that can 

be used in the fatigue design verification. The model is based on wind statistics. It is 

presented as a Markov matrix that gives the probability of the combinations of mean wind 

loads and wind load fluctuations. The model will be implemented in the new version of the 

standard NEN 6786. 
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1 Introduction 

The operating mechanism of bascule bridges and other types of bridges with a horizontal 

rotating axle are subjected to various types of fluctuating loads, which may cause fatigue 

failure of parts of the mechanism. In order to check whether the fatigue life of the 

mechanism meets the design life, the engineer needs descriptions of the ranges and 

numbers of the load fluctuations during the design life. Fluctuating loads due to the motor 

and due to changes in pre-stress and self-weight action during opening and closing are a 

direct result of the design of the bridge, and can be determined by the engineer. Other 

types of fluctuating loads – predominantly system dynamics and wind loads – are often 

considered by approximate values. These approximate values generally result in overly 

conservative designs of the operating mechanism. In some special cases – e.g. in case of a 

bridge with a relatively long average opening period – it may even result in unsafe 

designs. 

 

 In the Dutch standard NEN 6786 the fluctuating wind load to be considered in fatigue 

verifications consists of a fixed portion of the static load for the ultimate  limit state check. 
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The fluctuating wind load to be considered in the fatigue verification according to this 

standard can be written as: 
  

−
= ψ
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where 

− ,fat dF is the fluctuating wind load to be used in the fatigue checks 

− ,max,s dF is the maximum load to be used in the ultimate limit state static checks 

− ,min,s dF is the minimum load to be used in the ultimate limit state static checks 

− γ , ,s fat d is the partial factor for the fatigue load 

− γ ,s d is the partial factor for the ultimate limit state static load 

− ψ fat is the factor that relates the fluctuating wind load for fatigue to the wind load in 

the ultimate limit state reduction factor.  

The stress resulting from the load ,fat dF should be checked against the fatigue design 

strength of the considered part of the structure at 2 million cycles. 
 

The value for the reduction factor ψ fat is determined in Vrouwenvelder, Waarts and Van 

Staalduinen (1990) for the situation of a bridge with 500.000 openings during its life, where 

one opening consists of 2 minutes during which the bridge is being opened, 3 minutes 

during which the bridge is completely open, and 2 minutes during which the bridge is 

closed. The resulting value for ψ fat = 0.25. This value is used in NEN 6786 for all bridges, 

independent of the number of openings and opening times.  Although this check is easy to 

apply for the engineer, it does not account for the actual number of openings and the 

opening times per bridge. In addition, the maximum wind velocity at which the bridge is 

allowed to open varies per bridge. The ultimate limit state wind load is directly related to 

this maximum wind velocity. However, the fatigue wind load spectrum is less affected by 

the maximum wind velocity, because the number of cycles with high wind velocity is 

small.  By specifying a fixed value for ψ fat the standard ignores this effect.  
 

This paper presents a wind load model to be used in the fatigue design check of the 

operating mechanism of bridges rotating around a horizontal axis, such as bascule bridges. 

The model is based on the principles of the Eurocode for wind actions on structures, EN 

1991-1-4, in order to ensure consistency in the design. It provides a more accurate 

representation of the fluctuating wind load than the current method of Eq. (1), because it 

accounts for bridge-specific characteristics such as the maximum wind velocity, the 
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number of openings and the opening times. The wind load model can be used in 

combination with the other fluctuating load models. 

2 Bridge response to wind actions. 

The response of a structure subjected to wind action consists of background response and 

resonance. The background response is caused by wind load fluctuations taken by the 

structure. In case the lowest natural frequency of a structure, f1, is sufficiently low, the 

structure may resonate due to the wind load. The resonance is negligible in case of high 

natural frequencies, because wind fluctuations with high frequencies have a low energy 

content. This is indicated in Figure 1. Figure 1a gives an example of the wind load, Figure 

1b gives a schematic representation of a structure with a relatively high value of f1 and 

Figure 1c gives a schematic representation of a structure with a relatively low value of f1. 
 

 

Figure 1: Response of a structure with a relatively high and a relatively low value for the lowest 

natural frequency, subjected to fluctuating wind loads (after Holmes, 2001) 
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The frequency of the wind gust that contain most energy, is around 0.05 Hz. For structures 

with f1 larger than approximately 1 Hz, the exciting frequency is so low with respect to the 

natural frequency that the resonant dynamic response is negligible compared to the 

background response (after Holmes, 2001). Measurements on several types of bridge decks 

have indicated that f1 is in the order of 1 to 3 Hz (Waarts and Van Staalduinen, 1990). 

Consequently, the bridge will not experience significant resonant dynamic response. 

Instead, the bridge deck will follow closely the time variation of the exciting forces.  For 

this reason, the stress ranges relevant for the fatigue verification can directly be determined 

as a function of the wind velocity and the load frequency can be taken equal to the 

frequency of the wind gust fluctuations. The small effect of resonant dynamic response is 

accounted for by multiplying the quasi static response with a dynamic amplification factor, 

φw . For new bridges, a conservative value of the dynamic amplification φw = 1.15 is 

provided in NEN 6786. 

3 Wind load and wind velocities 

The wind velocity is divided into a component describing the 10 minutes mean wind 

velocity, ( )v t , and a component describing the fluctuations on this 10 minutes mean value, 

( )v t . 

3.1 10-minutes mean wind velocity 

The 10-minutes mean wind velocity v is usually expressed at a reference height of 10 m 

above ground level, 10v . A Weibull distribution function is often considered for 

representing the probability density of 10v  (Van Staalduinen, 1989): 

 

−  = −  
 

1
10 10

10( ) exp( )
kk

v k
k v v

f v
cc

 (2) 

 

As an example, Figure 2 provides 10v  as based on measurements carried out by the KNMI 

at Schiphol, The Netherlands, in 1964. The figure also provides the Weibull distribution 

that fits the measurements. 

Parameters c and k in Eq. (2) can be expressed as a function of the geographic location and 

the type of terrain. Considering the geographic location, the Dutch National Annex to EN 

1991-1-4 divides The Netherlands in three wind areas. In each of the wind areas a choice 
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Figure 2:  Weibull distribution of the 10-minute mean wind velocity as based on measurements at 

Schiphol in 1964 

 

has to be made between three types of terrain. For bridges, two types of terrain are 

relevant: 

− Terrain without buildings or terrain where buildings only cover a small part of the 

total area. The terrain roughness is set to z0 = 0.2 m and the height with uniform wind 

velocity is set to zmin = 4 m for this type of terrain. 

− Coastal area (or sea area). The terrain roughness is set to z0 = 0.005 m and the height 

with uniform wind velocity is set to zmin = 1 m for this type of terrain. 

 

The corresponding values for k and c in Eq. (2) are determined using the procedure in Van 

Staalduinen (1989) and are presented in Table 1. 

The 10-minutes mean wind velocity at a certain  height above ground level, ( )v z , can be 

determined with the following equations in EN 1991-1-4: 
 

= 10( ) ( )corv z z z v  (3) 
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 (4) 

 

Figure 3 presents the 10 minutes mean wind velocity for two of the terrain categories 

defined for The Netherlands, using Eq. (3) and (4). The figure indicates that the gradient in 

wind velocity over height is larger for built area than for coastal area. 
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Table 1:  Weibull variables for the 10-min. mean wind velocity at reference height (10 m above 

ground level) 

 non-densely built area  

(z0 = 0.2 m, zmin = 4 m) 

coastal area 

(z0 = 0.005 m, zmin = 1 m) 

k [-] c [m/s] k [-] c [m/s] 

Wind area I 1.85 6.1 1.85 7.9 

Wind area II 1.85 5.5 1.85 7.1 

Wind area III 1.75 4.9 1.75 6.4 
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Figure 3:  Relation between height above ground level and the normalised 10-minute mean wind 

velocity  

 

simplified representation of this broad banded spectrum is obtained when assuming a 

narrow banded Gaussian process around the central frequency, fc, Figure 4. The resulting 

narrow banded Gaussian process is schematically presented in Figure 5. Holmes (2001) 

and Wirsching and Light (1980) have shown that this narrow banded process is a 

conservative approximation for application to fatigue. 
 

The ranges of the narrow banded Gaussian process, Δv̂ , are equal to two times the peak 

values, v̂ : 

Δ =ˆ ˆ2v v  (5) 

These peak values v̂ can be described with a Rayleigh distribution function (Holmes, 2001): 

= −
σ σ

2

ˆ 2 2

ˆ ˆ
ˆ( ) exp( )

2
v

v v

v v
f v  (6) 
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Figure 4: Spectral density SL, describing the wind distribution as a function of the frequency f, for 

non-densely built area and 10v = 12 m/s 
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Figure 5: Wind fluctuations approximated by a narrow banded Gaussian process  

 

where σv is the standard deviation of the Gaussian process. This standard deviation is 

related to the 10 minutes mean wind velocity via the turbulence intensity, Iv.  
σ

=( )
( )
v

vI z
v z

 (7) 

EN 1991-1-4 provides the following equation for the turbulence intensity: 

 ≥
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

min
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min
min
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z z
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z
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z z
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 (8) 

From Eq. (3), (4), (7) and (8) it follows that σv is independent of the height above ground 

level. From Eq. (6) it subsequently follows that v̂  is also independent of the height above 

ground level.  

v̂Δ  

t 
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The frequency of the narrow banded Gaussian process is taken as the mean or central 

frequency of the wind spectrum, fc. The central frequency of a power spectrum P( f ) is by 

definition equal to
∞ ∞

= ⋅ 
0 0

( ) ( )cf f P f df P f df . In the case of the wind spectrum, the 

denominator is equal to σ2
v . Hence the central frequency of the wind spectrum is equal to: 

 

⋅
= =

σ 
cut-off cut-off

2
0 0

( , , )
( , , ) ( , , )

f f
vv

c L
v

f S z f v
f z f v df S z f v df  (9) 

where 

vvS = variance spectrum. 

LS = non-dimensional power spectral density function, describing the wind distribution 

         over frequencies. 

 f = frequency. 

cut-offf = cut-off frequency. 

 

The cut-off frequency is introduced because the integration in Eq. (9) to infinity results in fc 

= infinity. The cut-off frequency should be selected in such a way that wind gusts with a 

frequency larger than the cut-off frequency have a negligible influence on the response of 

the bridge. Here, we apply cut-offf = 6 × f1 because wind gusts with f  > 6 f1 have very small 

energy content, and therefore do not result in stresses of any significance. Most bridges 

have a lowest natural frequency f1 ≤ 3 Hz (Section 2), so that we apply cut-offf = 18 Hz. This 

is a conservative value. Wind gusts with a larger frequency do not result in stresses of any 

significance.  

 

The non-dimensional power spectral density function, SL in Eq. (9), can be written in terms 

of the reduced wind spectrum in EN 1991-1-4. The following equations are provided in 

that standard: 

( )
=

+ 5 3
6.8 ( , , )

( , , )
1 10.2 ( , , )

L
L

L

f z f v
S z f v

f z f v
 (10) 

⋅
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( )
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f L z

f z f v
v z

 (11) 
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where 

fL = non-dimensional frequency. 

SL = non-dimensional power spectral density function, describing the wind distribution 

        over frequencies. 

L = turbulence length scale representing the average wind gust size. 

Lt = 300 m. 

zt = 200 m. 

The central frequency, fc, is different for each value of the 10-minutes mean wind velocity, 

for each height (i.e. each opening angle) and for each bridge with its specific natural 

frequency and dimensions. Values for fc for practical ranges of 10v and z have been 

determined using Eq. (9) to (12). The results are provided in Figure 6 for a bridge with f1 = 

3 Hz. This figure indicates that fc increases with increasing 10-minutes mean wind velocity, 

and that the maximum value of fc occurs for z = 1 and z = 4 m for coastal and non-densely 

built area, respectively. 
 

It is difficult to determine f1 in the design stage. Besides, the amount of work required by 

the engineer to determine fc for each combination of 10v and z with Eq. (9) to (12) is so large, 

that this is unpractical. For this reason, a fixed value is adopted for fc here, independent of 

the actual value of f1, 10v and z. It is too conservative to apply the maximum value in 

Figure 6 for fc, because the maximum wind velocity occurs only during a very short period 

in life, i.e. the majority of openings occur at a relatively low wind velocity. The value fc = 

0.4 Hz is adopted. This value is based on a number of simulations for various bridges, with 

the range of dimensions and wind regimes according to the cases in Section 6. For a bridge 

with a 1st natural frequency of 3 Hz in a non-densely built area and a span of 10 m, 20 m or 

50 m, the fatigue life is underestimated by appr. 2 %, 8 % or 11 %, respectively, when 

adopting the fixed value fc = 0.4 Hz. The underestimation is slightly larger for a bridge 

with a smaller 1st natural frequency or a bridge in a coastal area. Thus, the fixed value fc = 

0.4 Hz is safe for practical cases. 
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Figure 6: Central frequency as a function of z and 10v , for f1 = 3 Hz 

3.2 Bridge opening regimes 

Bascule bridges – as well as other bridges that can rotate around a horizontal axis – are 

operated up to a certain 10-minutes mean wind velocity at reference height, 10,maxv . The 

bridge is not opened when 10,maxv is exceeded. This results in limiting the Weibull 

distribution of Eq. (2) to 10,maxv . Values for 10,maxv are presented in Table 2. For reference, 

Table 2 also indicates the approximate number of annual days that the bridge cannot be 

operated when 10v > 10,maxv . 
 

Table 2:  Maximum basic wind velocities 10,maxv (m/s) 

*) Terrain categories a = non-densely built area; b = coastal area 

 

approximate average annual 

number of non-operating days 

Wind area and terrain category 

I-a *) I-b II-a II-b III-a III-b 

4 times in 50 years 24.7 29.1 22.5 26.5 20.2 23.8 

1/12 19.6 23.0 18.2 21.4 16.0 18.8 

¼ 18.1 21.3 16.7 19.7 14.5 17.0 

½ 17.3 20.3 15.8 18.6 13.4 15.8 

1 16.3 19.2 14.8 17.4 12.5 14.7 

2 15.3 18.0 13.7 16.1 11.6 13.7 

3 14.7 17.3 13.2 15.5 11.0 12.9 

7 13.3 15.6 11.8 13.9 9.9 11.7 

14 12.2 14.4 10.7 12.6 8.8 10.4 

28 10.9 12.8 9.4 11.1 7.7 9.1 
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4 Derivation of the wind load model 

4.1 Wind pressure on the bridge deck 

NEN 6786 provides the relationship between the wind pressure, p, acting on the bridge 

deck and the wind load, q. 
 

= φdim t wp c c q  (13) 

where 

dimc = factor accounting for the bridge dimensions. For most bridges, dimC ≈ 0.95. 

tc = wind shape factor (explained hereafter), 

φw = dynamic amplification factor, equal to 1.15 (Section 2). 

 

The wind load, q, is described by the dynamic pressure of incompressible fluid dynamics: 
 

= ρ = ρ + = ρ + ρ + ρ  2 2 2 21 1 1 1
2 2 2 2

( )q v v v v v v v  (14) 

 

where ρ = density of air = 1.25 kg/m3. The last term in Eq. (14) is usually neglected. The 

approximate function then becomes: 
 

≈ ρ + ρ 21
2

q v v v  (15) 

 

The wind shape factor, ct, depends on the opening angle, α, of the bridge and the position 

of the bridge in relation to the wind direction. Values for ct are experimentally derived in 

wind tunnel research, (Vrouwenvelder, Waarts, Van Staalduinen, 1990). The maximum 

values for ct for all wind directions are provided in Figure 7. The values are derived in such 

a way that the wind load to be considered, q, is the wind load acting at the maximum 

height (top) of the bridge deck for the corresponding opening angle α. 

4.2 Probability of q and Δq 

The wind load of Eq. (15) is divided into a part related to the 10-min mean wind load, q , 

and a part related to the wind fluctuation, q : 

= ρ 21
2

q v  (16) 

= ρ q v v  (17) 

A Rayleigh distribution is used for the peaks of the wind fluctuations, Eq. (6). 

Consequently the peaks of the wind load, q̂ , are also described with a Rayleigh 
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Figure 7: Wind shape factors (maximum values for all wind directions) 

l = span of the bridge and b = width of the bridge, α = opening angle of the bridge 

 

distribution: 

= −
σ σ

2

2 2

ˆ ˆ
ˆ( ) exp( )

2
q

q q

q q
f q  (18) 

Combining Eq. (7), (17) and (18) yields for z = 10 m: 

= −
ρ ρ

2
10 10

10 2 2 4 2 2 4
10 10

ˆ ˆ
ˆ( ) exp( )

2
q

v v

q q
f q

I v I v
 (19) 

The Weibull distribution function for the 10 minutes mean wind velocity at height z = 10 

m, 10( )vf v , is provided with Eq.(2). The probability of a 10 minute mean wind velocity 

between 10v and +10 10v dv is: 

=1 10 10( )vP f v dv  (20) 

The conditional probability of a wind load peak due to the fluctuating part of the wind 

between 10q̂ and +10 10ˆ ˆq dq , given a 10 minutes mean wind velocity is: 

=2 10 10ˆ ˆ( )qP f q dq  (21) 

Eq. (20) and (21) are combined to obtain the probability P of a 10 minutes mean wind 

velocity between 10v and +10 10v dv in combination with a wind peak between 10q̂ and 

+10 10ˆ ˆq dq : 

b/l ≥ 1.5

b/l < 1.5 

b/l ≥ 1.5 b/l < 1.5 
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= =1 2 10 10 10 10ˆ ˆ( ) ( )v qP P P f v dv f q dq  (22) 

Note that this equation only holds under the approximation that the central frequency fc is 

independent of 10v , refer to Section 3.2. The 10 minutes average wind velocity and the 

peaks of the wind fluctuation are divided into blocks. The probability for each block with 

10v between a and b and 10q̂ between c and d,  is equal to: 

− − =  , 10 10 10 10ˆ ˆ( ) ( )
b d

b a d c v q
a c

P f v f q dq dv  (23) 

Substitution of Eq. (19) and (2) in Eq. (25) yields: 

−

− −
 = − −  
 ρ ρ 

2 1
10 10 10 10

, 10 102 2 4 2 2 4
10 10

ˆ ˆ
ˆexp( ) exp( )

2

b d kk

b a d c k
v va c

q q k v v
P dq dv

cl v l v c
 (24) 

Instead of 10v and 10q̂ , the wind load effects 10q and Δ 10q̂ are of interest for the fatigue 

calculation. The mean wind load effect 10q can be easily calculated with Eq. (16): 

= ρ 21
10 102

q v  (25) 

The range is twice the peak value, see Figure 5: 

Δ =10 10ˆ ˆ2q q  (26) 

4.3 Markov matrix 

Eq. (26) is numerically solved for wind area, terrain categories and opening regimes of 

Table 2. The results are presented in so-called Markov matrices. Markov matrices are 

frequently applied in off-shore industry and usually indicate the number of stress cycles 

for each combination of average stress and stress range occurring during the life of the 

structure. In this paper, a slightly modified form is used, where each cell in a matrix 

indicates the probability of a certain value of 10q (on the horizontal axis) in combination 

with a certain value of Δ 10q̂ (on the vertical axis), Table 3. The probabilities have been 

calculated with Eq. (24)-(26). The resulting Markov matrices are indicated in Tables 4 to 9. 
 

Table 3:  Explanation of the Markov matrices of Tables 4-9 

             0 – 1   [N/m2] 1 – 2   [N/m2] 2 – 3   [N/m2] … 

0 – 1   [N/m2] P1-0,1-0 P2-1,1-0 P3-2,1-0 … 

1 – 2   [N/m2] P1-0,2-1 P2-1,2-1 P3-2,2-1 … 

… … … … … 

 

Δ 10q̂ 10q
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The number of wind load cycles per matrix cell is obtained by multiplying the indicated 

probability P( 10q , Δ 10q̂ ) in each cell of the matrix with the total number of wind load 

cycles, ntot, during the life of the bridge: 
 

=tot op cn n T f  (27) 

where 

nop = number of openings during the life of the bridge 

T = average opening time 

fc = natural frequency = 0.4 Hz 

 

Using Eq. (3), (13), (16), (17), (25) and (26), the wind pressures can be determined in 

correspondence with the wind loads: 
 

= φ2
10 dim( ) ( )cor t wp z q z c c z  (28) 

Δ = Δ φ10 dimˆ ˆ( ) ( )cor t wp z q z c c z  (29) 

 

The input for the fatigue calculation with respect to the wind pressure effects consists of 

the Markov matrix together with Eq. (27) to (29). 

The opening regime of the bridge is considered by ignoring the columns of the Markov 

matrix with 10v > 10,maxv ; the latter parameter according to Table 2. As a consequence, the 

sum of the probabilities in the remaining columns in the Markov matrix is no longer equal 

to unity. The probabilities in the remaining columns should therefore be multiplied with 

the correction factor CP = 1/ΣP. This factor is approximately equal to the ratio 365 / (365- 

average annual no. of non-operating days) according to Table 2. However, CP is close to 

unity for all opening regimes. This correction may therefore be ignored. 

4.4 Conservatisms 

The wind load model contains a number of conservatisms. The representation of the wind 

fluctuations with a narrow banded Gaussian process (Figure 5), the selection of the 

maximum wind shape factors for all wind directions (Figure 7), and the use of a fixed 

value for the central frequency, are conservative. In a follow up research, the conservatism 

should be quantified by comparing the resulting wind load model with actual 

measurements on bridges. In addition, this allows for deriving a partial factor for the 

fatigue wind load model, γFf, corresponding with the target reliability. In this paper this 

partial factor is not further discussed. 
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Table 4:  Markov matrix with probability P for wind area I, non-densely built area (z0 = 0.2 m) 

10q [N/m2] 
0-10 10-31 31-51 51-74 74-93 93-111 111-135 135-146 146-166 166-187 187-205 205-240 240-381 381-544 

10v [m/s] 0.0-4 4-7 7-9 9-10.9 10.9-12.2 12.2-13.3 13.3-14.7 14.7-15.3 15.3-16.3 16.3-17.3 17.3-18.1 18.1-19.6 19.6-24.7 24.7-29.5 

10q̂Δ  [N/m2]               

0-80 3.7E-1 3.6E-1 1.3E-1 4.3E-2 9.6E-3 3.3E-3 1.6E-3 2.9E-4 2.5E-4 1.0E-4 3.6E-5 2.4E-5 7.3E-6 0 

80-160 0 1.6E-3 2.1E-2 2.9E-2 1.2E-2 5.5E-3 3.2E-3 6.4E-4 5.8E-4 2.5E-4 9.2E-5 6.4E-5 2.0E-5 8.8E-8 

160-240 0 0 1.9E-4 3.0E-3 3.9E-3 2.9E-3 2.3E-3 5.8E-4 5.8E-4 2.8E-4 1.1E-4 8.3E-5 2.8E-5 1.4E-7 

240-320 0 0 2.3E-7 9.4E-5 4.8E-4 7.4E-4 9.8E-4 3.3E-4 3.8E-4 2.2E-4 9.7E-5 7.9E-5 3.0E-5 1.7E-7 

320-400 0 0 0 1.1E-6 2.7E-5 1.0E-4 2.6E-4 1.2E-4 1.8E-4 1.3E-4 6.6E-5 6.1E-5 2.7E-5 1.9E-7 

400-480 0 0 0 0 7.4E-7 8.0E-6 4.5E-5 3.4E-5 6.5E-5 6.0E-5 3.6E-5 4.0E-5 2.2E-5 1.9E-7 

480-560 0 0 0 0 0 3.8E-7 5.5E-6 6.5E-6 1.7E-5 2.2E-5 1.7E-5 2.2E-5 1.5E-5 1.8E-7 

560-640 0 0 0 0 0 0 4.8E-7 9.3E-7 3.7E-6 6.5E-6 6.4E-6 1.1E-5 9.8E-6 1.6E-7 

640-720 0 0 0 0 0 0 0 9.6E-8 6.0E-7 1.6E-6 2.0E-6 4.5E-6 5.8E-6 1.4E-7 

720-800 0 0 0 0 0 0 0 0 7.7E-8 3.2E-7 5.6E-7 1.7E-6 3.2E-6 1.1E-7 

800-880 0 0 0 0 0 0 0 0 0 5.3E-8 1.3E-7 5.4E-7 1.6E-6 8.6E-8 

880-960 0 0 0 0 0 0 0 0 0 0 0 1.6E-7 7.8E-7 6.3E-8 

960-1040 0 0 0 0 0 0 0 0 0 0 0 0 3.6E-7 0 

1040-1120 0 0 0 0 0 0 0 0 0 0 0 0 1.6E-7 0 

  

Table 5:  Markov matrix with probability P for wind area I, coastal area (z0 = 0.005 m) 

10q [N/m2] 0-10 10-31 31-63 63-102 102-130 130-152 152-187 187-203 203-230 230-258 258-284 284-331 331-529 529-544 

10v  [m/s] 0.0-4 4-7 7-10 10-12.8 12.8-14.4 14.4-15.6 15.6-17.3 17.3-18 18-19.2 19.2-20.3 20.3-21.3 21.3-23 23-29.1 29.1-29.5 

10q̂Δ  [N/m2]               

0-70 2.5E-1 3.0E-1 2.3E-1 9.5E-2 1.9E-2 6.7E-3 4.2E-3 8.2E-4 7.8E-4 3.4E-4 1.5E-4 1.1E-4 4.5E-5 1.1E-7 

70-140 0 1.3E-6 5.5E-3 3.0E-2 1.7E-2 8.7E-3 6.9E-3 1.6E-3 1.6E-3 7.6E-4 3.6E-4 2.7E-4 1.2E-4 3.0E-7 

140-210 0 0 1.8E-6 9.0E-4 2.6E-3 2.7E-3 3.4E-3 1.1E-3 1.3E-3 7.1E-4 3.8E-4 3.0E-4 1.5E-4 4.5E-7 

210-280 0 0 0 6.2E-6 1.1E-4 3.1E-4 8.2E-4 3.8E-4 5.9E-4 4.1E-4 2.6E-4 2.4E-4 1.4E-4 5.2E-7 

280-350 0 0 0 0 1.7E-6 1.5E-5 1.0E-4 8.1E-5 1.7E-4 1.6E-4 1.3E-4 1.4E-4 1.1E-4 5.2E-7 

350-420 0 0 0 0 0 3.5E-7 7.6E-6 1.1E-5 3.4E-5 4.7E-5 4.7E-5 6.9E-5 7.2E-5 4.7E-7 

420-490 0 0 0 0 0 0 3.4E-7 8.6E-7 4.6E-6 9.7E-6 1.3E-5 2.7E-5 4.1E-5 3.9E-7 

490-560 0 0 0 0 0 0 0 0 4.3E-7 1.5E-6 3.0E-6 8.4E-6 2.1E-5 2.9E-7 

560-630 0 0 0 0 0 0 0 0 0 1.7E-7 5.1E-7 2.2E-6 9.6E-6 2.0E-7 

630-700 0 0 0 0 0 0 0 0 0 0 7.0E-8 4.8E-7 4.1E-6 1.3E-7 

700-770 0 0 0 0 0 0 0 0 0 0 0 8.8E-8 1.7E-6 7.8E-8 

770-840 0 0 0 0 0 0 0 0 0 0 0 0 6.4E-7 0 

840-910 0 0 0 0 0 0 0 0 0 0 0 0 2.4E-7 0 

910-980 0 0 0 0 0 0 0 0 0 0 0 0 8.5E-8 0 

  

Table 6:  Markov matrix with probability P for wind area II, non-densely built area (z0 = 0.2 m) 

10q [N/m2] 0-10 10-23 23-40 40-55 55-72 72-87 87-109 109-117 117-123 123-156 156-174 174-207 207-316 316-456 

10v  [m/s] 0.0-4 4-6 6-8 8-9.4 9.4-10.7 10.7-11.8 11.8-13.2 13.2-13.7 13.7-14 14-15.8 15.8-16.7 16.7-18.2 18.2-22.5 22.5-27 

10q̂Δ  [N/m2]               

0-70 4.2E-1 2.7E-1 1.6E-1 4.5E-2 1.6E-2 5.1E-3 2.3E-3 3.3E-4 1.3E-4 3.3E-4 3.9E-5 2.0E-5 4.6E-6 0 

70-140 0 3.0E-4 1.5E-2 2.2E-2 1.6E-2 7.4E-3 4.2E-3 6.8E-4 2.9E-4 7.6E-4 9.8E-5 5.2E-5 1.3E-5 7.6E-8 

140-210 0 0 5.6E-5 1.1E-3 3.0E-3 3.0E-3 2.6E-3 5.6E-4 2.6E-4 7.6E-4 1.2E-4 6.6E-5 1.8E-5 1.2E-7 

210-280 0 0 0 1.2E-5 1.9E-4 5.0E-4 8.6E-4 2.7E-4 1.4E-4 5.0E-4 9.7E-5 6.2E-5 1.9E-5 1.4E-7 

280-350 0 0 0 0 4.6E-6 4.1E-5 1.7E-4 8.3E-5 5.0E-5 2.4E-4 6.2E-5 4.6E-5 1.7E-5 1.6E-7 

350-420 0 0 0 0 0 1.8E-6 2.1E-5 1.7E-5 1.3E-5 8.5E-5 3.2E-5 2.9E-5 1.3E-5 1.6E-7 

420-490 0 0 0 0 0 0 1.7E-6 2.4E-6 2.2E-6 2.4E-5 1.4E-5 1.6E-5 9.1E-6 1.4E-7 

490-560 0 0 0 0 0 0 9.9E-8 2.3E-7 2.8E-7 5.5E-6 4.8E-6 7.3E-6 5.7E-6 1.3E-7 

560-630 0 0 0 0 0 0 0 0 0 1.0E-6 1.4E-6 2.9E-6 3.3E-6 1.0E-7 

630-700 0 0 0 0 0 0 0 0 0 1.6E-7 3.5E-7 1.0E-6 1.7E-6 8.0E-8 

700-770 0 0 0 0 0 0 0 0 0 0 7.2E-8 3.2E-7 8.5E-7 5.9E-8 

770-840 0 0 0 0 0 0 0 0 0 0 0 8.8E-8 4.0E-7 0 

840-910 0 0 0 0 0 0 0 0 0 0 0 0 1.8E-7 0 

910-980 0 0 0 0 0 0 0 0 0 0 0 0 7.5E-8 0 
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Table 7:  Markov matrix with probability P for wind area II, coastal area (z0 = 0.005 m) 

10q [N/m2] 0-10 10-31 31-51 51-77 77-99 99-121 121-150 150-162 162-189 189-216 216-243 243-286 286-439 439-456 

10v  [m/s] 0.0-4 4-7 7-9 9-11.1 11.1-12.6 12.6-13.9 13.9-15.5 15.5-16.1 16.1-17.4 17.4-18.6 18.6-19.7 19.7-21.4 21.4-26.5 26.5-27 

10q̂Δ  [N/m2]               

0-60 2.9E-1 3.3E-1 1.6E-1 9.0E-2 2.7E-2 1.0E-2 5.2E-3 9.0E-4 1.0E-3 3.9E-4 1.5E-4 8.3E-5 2.7E-5 1.2E-7 

60-120 0 2.1E-5 3.8E-3 2.0E-2 1.8E-2 1.1E-2 7.7E-3 1.6E-3 2.0E-3 8.5E-4 3.5E-4 2.0E-4 7.2E-5 3.2E-7 

120-180 0 0 5.5E-7 2.8E-4 1.6E-3 2.6E-3 3.3E-3 9.7E-4 1.5E-3 7.6E-4 3.6E-4 2.3E-4 9.3E-5 4.7E-7 

180-240 0 0 0 5.4E-7 3.1E-5 1.9E-4 6.0E-4 2.9E-4 6.0E-4 4.1E-4 2.4E-4 1.8E-4 8.8E-5 5.5E-7 

240-300 0 0 0 0 1.8E-7 5.4E-6 5.6E-5 4.8E-5 1.5E-4 1.5E-4 1.2E-4 1.1E-4 6.8E-5 5.4E-7 

300-360 0 0 0 0 0 6.5E-8 2.9E-6 4.6E-6 2.4E-5 4.0E-5 4.2E-5 5.3E-5 4.5E-5 4.8E-7 

360-420 0 0 0 0 0 0 8.6E-8 2.6E-7 2.6E-6 7.5E-6 1.2E-5 2.1E-5 2.6E-5 3.8E-7 

420-480 0 0 0 0 0 0 0 0 1.9E-7 1.0E-6 2.5E-6 6.6E-6 1.3E-5 2.8E-7 

480-540 0 0 0 0 0 0 0 0 0 1.1E-7 4.2E-7 1.7E-6 5.9E-6 1.9E-7 

540-600 0 0 0 0 0 0 0 0 0 0 5.5E-8 3.8E-7 2.5E-6 1.2E-7 

600-660 0 0 0 0 0 0 0 0 0 0 0 7.2E-8 9.7E-7 6.8E-8 

660-720 0 0 0 0 0 0 0 0 0 0 0 0 3.6E-7 0 

720-780 0 0 0 0 0 0 0 0 0 0 0 0 1.3E-7 0 

780-840 0 0 0 0 0 0 0 0 0 0 0 0 4.3E-8 0 

  

Table 8:  Markov matrix with probability P for wind area III, non-densely built area (z0 = 0.2 m) 

10q [N/m2] 0-6 6-19 19-31 31-37 37-48 48-61 61-76 76-84 84-98 98-112 112-131 131-160 160-255 255-375 

10v  [m/s] 0.0-3 3-5.5 5.5-7 7-7.7 7.7-8.8 8.8-9.9 9.9-11 11-11.6 11.6-12.5 12.5-13.4 13.4-14.5 14.5-16 16-20.2 20.2-24.5 

10q̂Δ  [N/m2]               

0-60 3.4E-1 3.6E-1 1.3E-1 3.5E-2 3.0E-2 1.3E-2 5.2E-3 1.3E-3 9.8E-4 4.2E-4 1.9E-4 7.4E-5 1.8E-5 1.5E-7 

60-120 0 2.3E-4 8.3E-3 9.6E-3 1.7E-2 1.3E-2 7.5E-3 2.3E-3 1.9E-3 9.1E-4 4.6E-4 1.9E-4 5.0E-5 4.2E-7 

120-180 0 0 1.0E-5 1.2E-4 1.1E-3 2.6E-3 3.0E-3 1.3E-3 1.4E-3 8.2E-4 4.8E-4 2.2E-4 6.6E-5 6.4E-7 

180-240 0 0 0 1.1E-7 1.5E-5 1.7E-4 5.3E-4 4.0E-4 5.8E-4 4.5E-4 3.3E-4 1.9E-4 6.7E-5 7.8E-7 

240-300 0 0 0 0 0 4.2E-6 4.5E-5 6.5E-5 1.5E-4 1.7E-4 1.7E-4 1.2E-4 5.6E-5 8.3E-7 

300-360 0 0 0 0 0 0 2.1E-6 6.1E-6 2.5E-5 4.5E-5 6.5E-5 6.6E-5 4.0E-5 8.1E-7 

360-420 0 0 0 0 0 0 5.4E-8 3.4E-7 2.7E-6 8.6E-6 1.9E-5 2.9E-5 2.6E-5 7.3E-7 

420-480 0 0 0 0 0 0 0 0 2.1E-7 1.2E-6 4.6E-6 1.1E-5 1.5E-5 6.2E-7 

480-540 0 0 0 0 0 0 0 0 0 1.3E-7 8.8E-7 3.4E-6 7.6E-6 4.9E-7 

540-600 0 0 0 0 0 0 0 0 0 0 1.4E-7 9.2E-7 3.7E-6 3.7E-7 

600-660 0 0 0 0 0 0 0 0 0 0 0 2.2E-7 1.7E-6 2.6E-7 

660-720 0 0 0 0 0 0 0 0 0 0 0 0 7.1E-7 1.8E-7 

720-780 0 0 0 0 0 0 0 0 0 0 0 0 3.0E-7 1.2E-7 

780-840 0 0 0 0 0 0 0 0 0 0 0 0 1.2E-7 7.2E-8 

  

Table 9:  Markov matrix with probability P for wind area III, coastal area (z0 = 0.005 m) 

10q [N/m2] 0-8 8-23 23-40 40-52 52-68 68-86 86-104 104-117 117-135 135-156 156-181 181-221 221-354 354-375 

10v  [m/s] 0.0-3.5 3.5-6 6-8 8-9.1 9.1-10.4 10.4-11.7 11.7-12.9 12.9-13.7 13.7-14.7 14.7-15.8 15.8-17 17-18.8 18.8-23.8 23.8-24.5 

10q̂Δ  [N/m2]               

0-50 2.9E-1 3.0E-1 1.8E-1 6.3E-2 4.4E-2 2.2E-2 9.4E-3 3.2E-3 2.2E-3 1.2E-3 5.6E-4 2.9E-4 9.2E-5 6.4E-7 

50-100 0 2.2E-6 2.5E-3 8.1E-3 1.6E-2 1.6E-2 1.1E-2 4.8E-3 3.8E-3 2.3E-3 1.2E-3 6.9E-4 2.4E-4 1.8E-6 

100-150 0 0 1.5E-7 2.0E-5 4.1E-4 1.8E-3 2.8E-3 2.0E-3 2.1E-3 1.7E-3 1.1E-3 7.2E-4 3.0E-4 2.6E-6 

150-200 0 0 0 0 1.5E-6 4.6E-5 2.5E-4 3.4E-4 5.8E-4 6.7E-4 5.9E-4 5.1E-4 2.7E-4 3.0E-6 

200-250 0 0 0 0 0 3.6E-7 8.8E-6 2.8E-5 8.6E-5 1.7E-4 2.2E-4 2.6E-4 2.0E-4 2.9E-6 

250-300 0 0 0 0 0 0 1.4E-7 1.1E-6 7.4E-6 2.6E-5 5.6E-5 1.0E-4 1.2E-4 2.6E-6 

300-350 0 0 0 0 0 0 0 0 3.7E-7 2.8E-6 1.0E-5 3.3E-5 6.4E-5 2.0E-6 

350-400 0 0 0 0 0 0 0 0 0 2.0E-7 1.4E-6 8.2E-6 3.0E-5 1.4E-6 

400-450 0 0 0 0 0 0 0 0 0 0 1.5E-7 1.7E-6 1.3E-5 9.5E-7 

450-500 0 0 0 0 0 0 0 0 0 0 0 2.9E-7 5.2E-6 5.8E-7 

500-550 0 0 0 0 0 0 0 0 0 0 0 0 2.0E-6 3.2E-7 

550-600 0 0 0 0 0 0 0 0 0 0 0 0 7.2E-7 1.7E-7 

600-650 0 0 0 0 0 0 0 0 0 0 0 0 2.5E-7 8.1E-8 

650-700 0 0 0 0 0 0 0 0 0 0 0 0 8.3E-8 0 
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5 Application of the wind load model in fatigue damage calculations 

5.1 Concept of fatigue damage 

The fatigue strength is usually described by an S-N curve: 
 

Δ =ˆmN s K  (30) 

 

where N is the number of cycles at failure as determined in fatigue tests, and m and K are 

parameters depending on the type of structural detail. Values for m and K are provided in 

standards such as ISO 6336-3, and are based on tests. In general, m and K depend on the 

mean stress s and on the stress fluctuation Δ ŝ . 

 

In case of a constant amplitude load, the fatigue damage D is defined as the ratio between 

the number of cycles occurring during the life, n, and the number of cycles to failure, N. 

Thus, D = 0 indicates that there is no fatigue damage and D = 1 indicates failure. In case of 

a variable amplitude load, consisting of k different stress ranges and corresponding no. of 

cycles, the fatigue damage is usually expressed by the Palmgren-Miner linear damage 

hypothesis according to Palmgren (1924) and Miner (1945): 
 

=
= 

1

k
i

ii

n
D

N
 (31) 

where 

ni = number of cycles during the life with mean stress is and stress fluctuation Δˆis . 

Ni = number of cycles to failure for mean stress is and stress fluctuation Δˆis , determined 

with Eq. (30). 

5.2 Elaboration for a non-rotating part of the bridge opening mechanism 

This section gives an example of the fatigue damage calculation for fixed parts of the 

bridge opening mechanism. An example of such a part is a hydraulic cylinder. The stress 

cycles induced by wind loading during one opening are schematically indicated in Figure 

8. In high cycle fatigue, linear elastic material behaviour is to be assumed. Hence, a linear 

relationship exists between the stress due to wind, sw, and the wind pressure, p: s = C·p, 

where C is the ratio between the stress in the considered part and the wind pressure on the 

bridge. This parameter, which is calculated by the engineer, is different for each part of a 

bridge and usually depends on the opening angle. For each opening angle α and for each 
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Figure 8: Stress cycles induced by wind loading on a fixed part during one bridge opening 

 

cell in the Markov Matrix, the stress range and the mean stress can now be determined 

using Eq. (28) and (29): 
 

Δ α Δ = α Δ α α φ10 10 dimˆ ˆ ˆ( , ) ( ) ( ) ( )w cor t ws q C q z c c  (32) 

α = α α α φ2
10 10 dim( , ) ( ) ( ) ( )w cor t ws q C q z c c  (33) 

 

If the structural part is also loaded by the self-weight of the bridge deck, sweight, the average 

stress value is equal to: 
 

α = α + α10 10 weight( , ) ( , ) ( )ws q s q s  (34) 

The values for 10q and Δ 10q̂ in Eq. (32) and (33) are indicated on the horizontal and vertical 

axes, respectively, of the Markov matrix. These values must be selected for each cell of the 

Markov matrix. The corresponding number of cycles for that cell is obtained by 

multiplying the probability in the cell with the total number of cycles of Eq. (27): 
 

α Δ = Δ α10 10 10 10ˆ ˆ( , , ) ( , ) ( )w op cn q q P q q n T f  (35) 

Where P( 10q , Δ 10q̂ ) is the probability indicated in the cell of the Markov matrix, fc is the 

central frequency taken as 0.4 Hz, nop is the total number of openings during the life of the 

bridge and T is the time at opening angle α. 
 

The fatigue damage is determined for each cell of the Markov matrix using Eq. (30) - (32), 

(34) and (35): 

[ ]α Δ Δ α Δ
α Δ = 10 10 10

10 10
ˆ ˆ ˆ( , , ) ( , )

ˆ( , , )
m

w w
w

n q q s q
D q q

K
 (36) 

opening completely open closing 
time

stress 

Δsw

sm,w 
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Because m and K depend on ws and Δˆws , m and K are different for each cell of the Markov 

matrix. 

 

Using the Palmgren-Miner linear damage hypothesis, the total fatigue damage due to wind 

actions, Dw,tot, is equal to the sum of the damages determined for each cell of the Markov 

matrix: 
 

= α Δ,tot 10 10ˆ( , , )w wD D q q  (37) 

 

The value of Dw,tot should be smaller than unity. As a conservative approach, the 

calculation can be carried out twice, for wind acting in the two opposite directions in 

Figure 7, and Dw,tot should be smaller than unity for both cases. 

 

The calculation provided here considers wind action only. However, other types of loading 

act simultaneously. This is schematically indicated in Figure 9, where sT is the stress due to 

restrained thermal expansion and spre is the pre-stress. A rainflow analysis of this stress 

process results in: 

− The stress cycles for the wind fluctuations Δsw, described by Eq. (32) to (35); 

− The maximum stress cycle Δs1, with one cycle per opening; 

− The one-but-maximum stress cycles Δs2, with two half cycles per opening. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Stress cycles in a fixed part during one bridge opening 
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Although the frequency of stress cycles Δs1 and Δs2 is much lower than that of Δsw, the  

contribution of Δs1 and Δs2 to the fatigue damage can be significant for structural parts 

with an S-N curve having a large value of m (Eq. 30). The maximum wind fluctuation 

during an opening is relevant for Δs1 and Δs2. It is possible to derive Markov matrices for 

the maximum wind fluctuations during openings. However, this complicates the 

calculation for the engineer in practice. For this reason we use an approximate value for 

the contribution of the wind to Δs1 and Δs2: 
 

α = α + α α,max ,10 ,10 ,10

0

7
( , ) ( , ) ( , )

( )
ln

w m w m w ms q s q s q
z
z

 (38) 

The last part of Eq. (38) represents the expectation of the maximum wind fluctuation, and 

is in agreement with the wind load for the static design check in EN 1991-1-4. The value of 

ws (α, ,10mq ) can be determined with Eq. (33). The contribution of the wind load according 

to Eq. (38) should be added to the other stress components indicated in Figure 9, and 

should be evaluated for all opening angles α. The maximum total stress range of all 

opening angles should be selected for Δs1 and Δs2. 

5.3 Elaboration for a rotating part of the bridge opening mechanism 

This section gives an example of the fatigue damage calculation for rotating parts of the 

bridge opening mechanism. The stress cycles may either be jump stress cycles, or fully 

reversed stress cycles. Examples of such parts are gear teeth or axles, respectively. The 

stress cycles induced by wind loading during one opening for a gear tooth are 

schematically indicated in Figure 10. For simplicity, in this figure it is assumed that the 

gear tooth is loaded by wind load only. During opening and closing, the gear is rotating 

while it is fixed during complete opening. Depending on the position of the considered  
 

 

 

 

 

 

 

 

 

Figure 10: Stress cycles induced by wind loading on a rotating part during one bridge opening 
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tooth, it may or may not be loaded during complete opening. We assume that the rotating 

frequency of the gear, fω, is larger than the central frequency of the wind spectrum, fc. 

 

The stress cycles during complete opening are identical to those for a fixed part, Eq. (32)-

(35). The stress cycles during opening and closing are approximated with: 

- 25 % stress cycles coinciding with the peaks of the wind fluctuations: Δsa. 

- 25 % stress cycles coinciding with the valleys of the wind fluctuations: Δsb. 

- 50 % stress cycles exactly in between the peaks and valleys: Δsc. 

 

For each opening angle α and for each cell in the Markov matrix, the stress ranges are 

determined as: 

 

Δ α Δ = α α α φ + α Δ α α φ2 1
,10 10 ,10 dim 10 dim2

( , , ) ( ) ( ) ( ) ( ) ( ) ( )a m m cor t w cor t ws q q C q z c c C q z c c  (39) 

Δ α Δ = α α α φ − α Δ α α φ2 1
,10 10 ,10 dim 10 dim2

( , , ) ( ) ( ) ( ) ( ) ( ) ( )b m m cor t w cor t ws q q C q z c c C q z c c  (40) 

Δ α Δ = α α α φ2
,10 10 ,10 dim( , , ) ( ) ( ) ( )c m m cor t ws q q C q z c c  (41) 

 

If the structural part is also loaded by the self-weight of the bridge deck, the corresponding 

stress sweight should be added to Eq. (39)-(41). The mean stress level per cycle is half the 

stress range. The numbers of cycles are: 

 

ωα Δ = Δ α,10 10 ,10 10( , , ) 0.25 ( , ) ( )a m m opn q q P q q n T f  (42) 

ωα Δ = Δ α,10 10 ,10 10( , , ) 0.25 ( , ) ( )b m m opn q q P q q n T f  (43) 

ωα Δ = Δ α,10 10 ,10 10( , , ) 0.50 ( , ) ( )c m m opn q q P q q n T f  (44) 

 

The same remarks and solution apply regarding the maximum stress range per opening, 

Δs1. 
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6 Calculation examples 

6.1 Example of a non-rotating part 

Consider a hydraulic cylinder in a bridge with a number of openings during the life of 

nop = 500000 and a maximum height (at full opening) l = 20 m and a width of b = 10 m. The 

bridge is situated in wind area II, non-densely built, so that Table 6 applies. Each opening 

consists of 2 minutes during which the bridge is being opened, 3 minutes during which the 

bridge is completely open, and 2 minutes during which the bridge is closed. The stress due 

to self-weight is sweight (α)= 15 N/mm2 . cos(α). The value of parameter C, describing the 

relationship between wind pressure and stress, depends on the geometry of the structure. 

In the example, the ratio between the stress in the cylinder and the wind pressure on the 

bridge is taken as C = 1.8.105 [-] independently of the opening angle. The bridge is operated 

up to a maximum 10-minutes wind velocity at reference height of 10,maxv = 14 m/s. The 

design values of the ultimate tensile strength and the fatigue strength at 2.106 cycles of the 

part under consideration is ftd = 519 N/mm2 and ffat,re,d= 37 N/mm2. The standard NEN 

6786 provides the S-N curve according to Figure 11 (fully reversed stress condition). The S-

N curve is described with Eq. (45) to (48) (for fully and for non-reversed stress conditions): 

 

 

 

Figure 11: S-N curve according to NEN 6786 for fully reversed stress condition ( s = 0) on the 

basis of the stress peak, σmax 
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Δ =ˆmN s K  (45) 
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 
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 
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1 , ,2 10 2 (1 )
dm

fat re d
td

s
K f

f
 (48) 

For each opening angle α and for each cell in the Markov Matrix of Table 6, the stress 

range, the mean stress and the number of cycles are determined with Eq. (4) and (32) to 

(35) and with the parameters in Table 1 (z0 = 0.2 m, zmin = 4 m). As an example, for the 

boxed cell in Table 6 with 117 N/m2 ≤ 10q < 123 N/m2 and 490 N/m2 ≤ Δ 10q̂ < 560 N/m2, 

and for an opening angle α = 90 º: 

α

= = =0

0

20mcos
lnln

0.2 m
1.18

10m 10m
ln ln

0.2 m

cor

l
z

z

z

 (49) 

Δ = Δ φ

= ⋅ × × × × × =

10 dim
5 2 2

ˆ ˆ

1.8 10 560 N m 1.18 0.95 1.3 1.15 168 N mm

w cor t ws C q z c c
 (50) 

= φ

= ⋅ × × × × × =

2
10 dim

5 2 2 21.8 10 123 N m 1.18 0.95 1.3 1.15 43 N mm

w cor t ws C q z c c
 (51) 

= + = + ° =2 2 2
weight 43 N mm 15 N mm cos 90 43 N mmws s s  (52) 

−= Δ = ⋅ × × × =7
10 10ˆ( , ) 2.8 10 500000 180 s 0.4 Hz 10w op cn P q q n T f  (53) 

 

For this combination of Δˆws and ws , the parameters m and K of the S-N curve are equal to 

(Eq. (45)-(48)): m = 3.75 and K = 1.5.1013 [N/mm2]m. The contribution to the fatigue damage 

is calculated using Eq. (36): 
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−Δ
= = = ⋅

⋅

2 3.75
4
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ˆ 10(168 N mm )
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m
w w

w
n s

D
K

 (54) 

This value represents the contribution to the fatigue damage of the considered combination 

117 N/m2 ≤ 10q < 123 N/m2 and 490 N/m2 ≤ Δ 10q̂ < 560 N/m2 and for the fully opened 

condition of the bridge. The procedure has to be repeated for each cell of the Markov 

matrix, and for each opening angle α. The fatigue damage of the wind fluctuations due to 

all combinations of 10q , Δ 10q̂ and α is obtained by the summation of the damage for each 

individual cell of the Markov matrix and for each opening angle α (Eq. 37). The fatigue 

damage of the wind fluctuations is equal to Dw,tot = 0.58. 
 

Next step is the evaluation of stress cycles Δs1 and Δs2. The contribution of the wind load to 

these stress cycles is determined with Eq. (38). The corresponding number of cycles is 

equal to the number of openings during the life of the bridge. The contribution to the 

fatigue damage of cyles Δs1 and Δs2 can be determined with a similar procedure as 

described above, leading to: DΔs1 = 0.13 and DΔs2 = 0.01, respectively. Thus, the total fatigue 

damage in the part considered is equal to: Dtot= 0.58 + 0.13 + 0.01 = 0.72. This is smaller 

than 1.0. Provided that the cylinder is not subjected to other fluctuating loads, such as 

traffic loads, the cylinder satisfies the requirements with respect to fatigue. 

 

Eq. (1) represents the fatigue check in NEN 6786. The elaboration of that check is not 

provided here, only the result is provided: the fatigue unity check is equal to 1.0. Hence the 

cylinder also satisfies this fatigue check, but in this calculation there is no reserve. 

 

The same calculation as provided above has been carried out for a variety of cases, with 

different values for the variables nop, 10,maxv , l, sweight and spre, and for different S-N curves 

characterised by ft and ffat,re. In all cases considered, an opening consists of 2 minutes during 

which the bridge is being opened, 3 minutes during which the bridge is completely open, 

and 2 minutes during which the bridge is closed. For each case, the fatigue checks 

according to the procedure in NEN 6786 and according to the procedure in this paper have 

been determined for different values of the ratio between the stress and the wind pressure, 

C. Following, the value of C is selected that results in the fatigue unity check of NEN 6786 

being equal to 1.0, and the value of C is selected that results in the fatigue damage of the 

procedure in this paper being equal to 1.0. The ratio between these two values of C is 

determined 
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=

χ =
=

NEN6786

method in this paper

 for which u.c. 1
 for which 1

C
C D

 (55) 
 

Hence, the ratio χ provides the difference between the two methods, expressed as stress 

ratio. The results of these calculations are provided in Table 10.  

 

Table 10:  Ratio χ for non-rotating parts 

5.105 5.105 5.105 5.105 5.105 5.105 5.105 1.104

14 14 14 14 14 22.5 10.7 14
20 80 20 20 20 20 20 20
15 15 0 50 15 15 15 15
-40 -40 -40 -40 0 -40 -40 -40
0.82 0.80 0.91 *) 0.98 0.58 1.20 0.57
1.03 0.98 1.03 0.93 1.03 0.46 *) 0.82
0.78 0.74 0.85 *) 0.94 0.55 1.09 0.41

       v 10,max  [m/s]
       l  [m]
       s weight  [MPa]
       s pre  [MPa]

       n op  [-]

f t  = 490 [MPa]
f t  = 900 [MPa]
f t  = 700 [MPa]

f fat,re  = 50 [MPa]
f fat,re  = 100 [MPa]
f fat,re  = 50 [MPa]  

*) factor could not be determined because static strength is decisive for the design 

 

For the cases with nop = 5.105 and 10,maxv =14 m/s, the ratio χ varies between 0.74 and 1.03, 

indicating that the method in this paper allows in general for an approximately equal or  

larger value of C – i.e. approximately equal or larger stress cycles – than the method in 

NEN 6786. The differences between the methods are larger in cases with a high value of 

10,maxv = 22.5 m/s or a low value of 10,maxv = 10.7 m/s. This is due to the fact that the load 

for the fatigue check in NEN 6786 is directly related to the ultimate limit state load via Eq. 

(1), and this ultimate limit state load is directly related to 10,maxv , but the number of 

occurrences of the maximum wind velocity 10,maxv is not considered in the fatigue check in 

NEN 6786. In reality, however, the probability of occurrence of a high value of 10v is 

smaller than that of a low value. In other words, the fatigue wind load spectrum is largely 

independent of 10,maxv . This aspect is not considered in the method in NEN 6786, but it is 

considered in the method in this paper. 
 

Finally, the method in this paper allows for a larger value of C – i..e. larger stress cycles – 

for nop = 1.104. This is due to the fact that the factor ψfat in Eq. (1) is derived for 5.105 

openings, and the actual number of openings is not considered in the method in NEN 6786. 

This number of openings is considered in the method in this paper. 
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6.2 Example of a rotating part 

Similar to the example in Section 6.1, the fatigue damage can be determined for a rotating 

part. Consider the tooth of a gear. During full opening, the decisive tooth is fixed and 

continuously loaded and the stress cycles on the tooth are evaluated in the same way as for 

the non-rotating part in Section 6.1. When the bridge is being opened or closed, the fatigue 

damage is evaluated with Eq. (39) to (44), which again have to be evaluated for each cell of 

the Markov matrix and for each opening angle. Table 11 gives the ratio χ according to Eq. 

(55) for a number of cases with rotating parts. 

 

Table 11:  Ratio χ for rotating parts 

5.105 5.105 5.105 5.105 5.105 5.105 5.105 5.105 5.105 1.104

14 14 14 14 14 14 14 22.5 10.7 14
20 80 20 20 20 20 20 20 20 20
15 15 0 15 15 15 15 15 15 15
-40 -40 -40 0 0 -40 -40 -40 -40 -40
15 15 15 15 15 4.99 100 15 15 15

0.97 0.97 0.99 0.97 0.97 1.09 0.81 0.46 1.62 0.97
0.77 0.79 0.83 0.77 0.77 0.78 0.75 0.40 1.05 0.53

f t  = 490 [MPa] f fat,re  = 100 [MPa]
f t  = 900 [MPa] f fat,re  = 100 [MPa]

       s pre  [MPa]
       s weight  [MPa]

       f ω  [Hz]

       n op  [-]
       v 10,max  [m/s]
       l  [m]

 

 

The results for rotating parts in Table 11 are similar to those for non-rotating parts in Table 

10: The differences between the methods are relatively small for the cases with nop = 5·105 

and 10,maxv = 14 m/s. Large differences are determined for the cases with a high or low 

value for 10,maxv and for a small number of openings. 

7 Conclusions and recommendations 

This paper presents a wind load model that can be used for fatigue design verifications of 

the operating mechanism of bascule bridges. The paper shows that it is possible to derive 

such a wind model with the basic principles behind EN 1991-1-4. The model consists of a 

Markov matrix with the probability of each combination of the mean wind load and wind 

fluctuation. By multiplying this probability with the total number of wind cycles during 

the life of the bridge, one obtains the fatigue load spectrum. The model requires more work 

and skills from the engineer than the current simple design check, but it is applicable to a 

wider range of bridges because it explicitly accounts for the number of openings, the 

average time of an opening and for the fact that the fatigue wind load spectrum is largely 

independent of 10,maxv . The new model will be applied in the standard NEN 6786 as an 

alternative for the simple design check. 
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Combination of the wind load model with other types of loads acting simultaneously on 

the bridge deck is considered in an approximate way. It is recommended to derive a more 

accurate method to account for the combinations of loads. In particular, effort is required 

to generate an accurate model for the load fluctuations generated by the dynamics of the 

system. 

 

The model contains various conservatisms. In particular, the representation of the wind 

fluctuations with a narrow banded Gaussian process around fc, the selection of the 

maximum wind shape factors for all wind directions, and the use of a fixed value for the 

central frequency, are conservative. It is recommended to quantify the effect of these 

conservatisms and to determine the value of the partial factor for the target reliability in a 

follow-up research. 
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