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Vibrations of machine foundations and 
surrounding soil 

H. van Koten, Zoetermeer, 2e Stationsstraat 223, the Netherlands 1                      

P.C.J. Hoogenboom, Delft University of Technology, Delft, the Netherlands 

Rotating or pulsing machines are often placed on concrete foundations supported by soil. The 

machines cause vibrations in the building and in the surrounding soil. This paper provides 

information, formulas and calculation examples to predict these vibrations. The formulas 

have been experimentally tested for both soil foundations and pile foundations. In addition, 

criteria are provided for evaluating the vibrations. 

1 Introduction 

In consulting practice, predicting vibrations due to machines is a regularly occurring task. 

There are several textbooks that provide a comprehensive introduction to the field of 

foundation dynamics, for example [1] and [2]. However, these books are incomplete, 

particularly with respect to pile foundations and the significant influence of the soil layer 

surrounding a foundation. The first author has performed research on foundation 

dynamics and has been a consultant in numerous foundation vibration problems for TNO 

in the Netherlands. This paper is intended as knowledge transfer to the next generation of 

engineers, providing a short but hopefully useful introduction to the field foundation 

dynamics. 

2 Forces caused by rotating machines 

A machine with a rotating component causes forces on its foundation. The amplitude of 

the centrifugal force F depends on the rotating mass m, the mass unbalance e and the 

angular frequency ω. 
 

= ω2F m e  (1) 

 

The mass unbalance e is the distance between the centre of gravity of the rotation mass and 

the axis of rotation. The angular frequency ω depends on the frequency f. 
----------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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Table 1. Balance quality grades for various groups of representative rigid rotors [3] 

Quality grade Rotor types 

G 4000 Crankshaft/drives of rigidly mounted slow marine diesel engines with uneven number of 

cylinders 

G 1600 Crankshaft/drives of rigidly mounted large two-cycle engines 

G 630 Crankshaft/drives of rigidly mounted large four-cycle engines 

Crankshaft/drives of elastically mounted marine diesel engines 

G 250 Crankshaft/drives of rigidly mounted fast four-cylinder diesel engines 

G 100 Crankshaft/drives of fast diesel engines with six or more cylinders 

Complete engines (gasoline or diesel) for cars, trucks and locomotives 

G 40 Car wheels, wheel rims, wheel sets, drive shafts 

Crankshaft/drives of elastically mounted fast four-cycle engines with six or more cylinders 

Crankshaft/drives of engines of cars, trucks and locomotives 

G 16 Drive shafts (propeller shafts, cardan shafts) with special requirements 

Parts of crushing machines 

Parts of agricultural machinery 

Individual components of engines (gasoline or diesel) for cars, trucks and locomotives 

Crankshaft/drives of engines with six or more cylinders under special requirements 

G 6.3 Parts of process plant machines 

Marine main turbine gears (merchant service) 

Centrifuge drums 

Paper machinery rolls; print rolls 

Fans 

Assembled aircraft gas turbine rotors 

Flywheels 

Pump impellers 

Machine-tool and general machinery parts 

Medium and large electric armatures (of electric motors having at least 80 mm shaft height) 

without special requirements 

Small electric armatures, often mass produced, in vibration insensitive applications and/or with 

vibration-isolating mountings 

Individual components of engines under special requirements 

G 2.5 Gas and steam turbines, including marine main turbines (merchant service) 

Rigid turbo-generator rotors 

Computer memory drums and discs 

Turbo-compressors 

Machine-tool drives 

Medium and large electric armatures with special requirements 

Small electric armatures not qualifying for one or both of the conditions specified for small 

electric armatures of balance quality grade G 6.3 

Turbine-driven pumps 

G 1 Tape recorder and phonograph (gramophone) drives 

Grinding-machine drives 

Small electric armatures with special requirements 

G 0.4 Spindles, discs and armatures of precision grinders 

Gyroscopes 
 



 31 

ω = 2π f (2) 
 

The centrifugal force can be replaced by two perpendicular forces with the same angular 

frequency ω that are also perpendicular to the rotating axis. The phase difference between 

these forces is 90°. 

A well-balanced machine causes small forces on the foundation. The balance requirements 

for machines are formulated in ISO 1940/1 [3]. The purpose of this code is to prevent large 

stresses in engines. The code classifies machines based on the geometry of the rotating  
 

 

Figure 1. Accepted unbalance e [μm] as a function of the service speed 

of rotation ω [rev./min and rev./s] for various balance quality grades [3] 
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parts (Table 1, Fig. 1). This is based on the fact that geometrically similar rotors running at 

the same speed will have similar stresses in the rotor and its bearings. Each type of 

machine has a balance quality grade. For example, a steam turbine has a balance 

quality grade G 2.5. This means that e times ω should be smaller than 2.5 mm/s. If the 

engine has a maximum service speed of 600 revolutions per minute, its angular frequency 

ω is 600 × 2π / 60 = 63 rad/s. The maximum centre of gravity displacement is called 

permissible residual unbalance, pere = 2.5 / 63 = 40 μm. A mechanical engineer will adjust 

small masses on the rotating parts of this engine to obtain an unbalance smaller than 40 

μm. 

3 Forces caused by machines with pistons 

Figure 2 shows the parts of a piston engine. This section shows that this machine causes 

forces with more than one frequency. The length of the rotating bar OA is 1r . The length of 

piston bar AB is 2r . The distance between point O and the piston is 1r + 2r - z. For the 

moving piston, two coupled kinematic equations can be formulated [4]. 
 

+ = ω + α +
ω = α

1 2 1 2

1 2

cos( ) cos
sin( ) sin

r r r t r z
r t r

 (3) 

 

From Eqs (3) the piston movement z can be solved. 

 

 

 

Figure 2. Kinematics of a piston engine 
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cos 1 sin

2
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2
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= ω ω + ω ω
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The force is the product of the mass of the piston plus bar and the acceleration. The first 

order force is 

2
1 1F mr= ω . (6) 

 

The second order force is 

= ω
2

21
2

2

r
F m

r
. (7) 

 

Note that these forces act in the direction of motion z. Most piston engines have several 

pistons which partly balance each other out. Nonetheless, perfect balancing is not possible 

and the foundation is loaded by forces with angular frequency ω and 2ω. Most machines 

are more complicated than shown in Figure 2 and therefore also 3ω, 4ω, etcetera occur. 

4 Soil stiffness 

The soil stiffness at low stresses can be described by a modulus of elasticity. The soil can be 

modelled as a linear elastic half space. A shock excitation on the half space causes three 

waves; a compressive wave, a shear wave and a Rayleigh wave (Fig. 3). The compressive 

wave contains 7% of the shock energy. The shear wave contains 26% of the energy and the 

Rayleigh wave contains 67% of the energy [1]. The compressive wave is fastest with a 

velocity of 
 

− ν=
ρ + ν − ν

1
(1 )(1 2 )c

E
v , (8) 

 

where E is the modulus of elasticity, ρ is the soil density and ν is Poisson’s ratio. The shear 

wave velocity is 
 

=
ρ + ν

1
2(1 )s

E
v . (9) 
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Figure 3. Waves in a halve space excited by a dynamic point load [1, p. 91] 

 

The Rayleigh wave velocity is 
 

=
ρ − ν − ν

1
2(1.4 0.8 )(1 )R

E
v . (10) 

 

The velocities of the shear wave and the Rayleigh wave are almost the same. The Rayleigh 

wave has not only more energy than the other waves, it also travels at the surface only and 

loses less energy during travelling. Therefore, at some distance of the source the Rayleigh 

wave is much larger than the other waves. 
 

In an experiment a round steel plate was put onto the soil of a clear field. A displacement 

receiver was positioned at 10 m distance of the plate centre. The steel plate was hit by a 

hammer four times. The recorded result is shown in Figure 4. After 28 milliseconds the 

receiver recorded the compression wave and after 56 milliseconds it recorded the shear 

and Rayleigh waves. Consequently, the compression wave velocity is 10/0.028 = 357 m/s. 

The shear and Rayleigh wave velocity are 10/0.056 = 179 m/s. 
 

From Eq. (8) and (9) Poisson’s ratio can be solved 
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Figure 4. Four times the measured displacement at 10 m distance due to four hammer blows 

 

The density of the soil ρ has been determined as ρ = 1600 kg/m³. The soil E modulus is 

calculated by Eq. (8). 
 

+ ν − ν + −= ρ = × = ×
− ν −

2 2 8(1 )(1 2 ) (1 0.33)(1 0.66)
1600 357 1.4 10

1 1 0.33cE v  N/m². 

 

 

Figure 5. Cross-hole test to determine the shear wave velocity 
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Similar tests have been performed in vertical holes in the soil to obtain information about 

soil layers at a lower level (Fig. 5). A shear wave is excited by dropping a weight onto steel 

blocks that are clamped in a bore hole. The receiver is positioned in another hole at the 

same depth. These are called cross-hole tests. The results are shown in Figure 6 (dashed 

line). The continuous line shows the results of excitation at the surface and measurements 

in one hole at various depths. These are called down-hole tests. For soil supported machine 

foundations the surface wave tests showed to give sufficient information. 

5 Dynamic properties of a soil supported block 

Experiments have been performed on a concrete block of 1×1×1.5 m (Fig. 7) [5]. The 

surrounding sand has been filled in layers. After applying a layer it was compacted by 

water and the block was left alone for a few days for the water to drain away. 

Subsequently, an harmonic force has been applied straight above the centre of the block in 

the vertical and horizontal direction (horizontal in the direction of the 1 m width). The 

response has been measured. This has been repeated for every layer of filling. 

The tests show that each extra layer increases the stiffness, the resonance frequency and the 

damping for both horizontal and vertical excitation (Fig. 8, 9). The amplitude of the 

 

 

            

Figure 6. Shear wave velocity as a function of the soil depth 
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horizontal displacement is larger than the vertical amplitude. The large peaks are the 

resonance frequencies of the rotation mode. Smaller second peaks occurs due to horizontal 

shifting of the block on the soil. The peak values are based on a small number of 

measurements, nonetheless, they are considered to be reasonably accurate. The results 

have been used to determine analytical expressions for the influence of soil and filling on  
 

          

                     Figure 7. Cross-section of a concrete block partly enclosed by sand 

 

 

     Figure 8. Measured vertical displacement amplitude of the concrete 

     block enclosed by four levels of sand. The markers in this graph do not indicate 

     measured data points but are to distinguish the curves. 
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      Figure 9. Measured horizontal displacement amplitude of the concrete 

      block enclosed by four levels of sand. The markers in this graph do not indicate 

      measured data points but are to distinguish the curves. 

 

the vibration of the block. These expressions are presented in the following sections. 

5.1 Vertical stiffness and damping of a soil supported block 

Consider a block resting on soil without side filling. The vertical stiffness of a flat 

rectangular plate on soil is [1 p. 350] 
 

= 1.1k E LB , (11) 

 

where L and B are the horizontal dimensions of the contact area between the plate and the 

soil. B is smaller than L. Part of the soil mass is vibrating with the block and acts as added 

frequency [Hz]

μ

horizontal
displacement
amplitude
[ m/N]
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mass. The results of the calculations agree well with the test results if soil mass is added. 

This soil mass has a depth of 0.3B and is 0.3B wider than the edges of the concrete. The 

total mass becomes  
 

= ρ + ρ + +0.3 ( 0.6 )( 0.6 )c sm LHB B L B B B , (12) 

where ρc is the concrete density and sρ is the soil density. The damping of a vertically 

vibrating flat plate on soil is [1] 
 

= ρ0.32 sc LB E  (13) 

 

Subsequently, the block with side filling is considered. The stiffness is increased by the soil 

layers [5] 
 

= + +1.1 2( )sk E LB h L B , (14) 

 

where sh is the height of the side filling. The mass is 

 

( ) = ρ + ρ + + + + 0.3 0.6 )( 0.6 ) 0.1 2(c s sm LHB B L B B B Bh L B . (15) 

 

The damping is 
 

[ ]= + + ρ0.32 2( )s sc LB h L B E . (16) 

With the above expressions for the stiffness k, the mass m and the damping c the dynamic 

response of the block can be calculated. The differential equation is 

+ + = ω
2

2
sin( )

d w dw
m c kw F t

dtdt
, (17) 

where w is the dynamic displacement. The displacement amplitude as function of the 

excitation frequency ω is 

=
ω + − ω

max 2 2 2( ) ( )

F
w

c k m
. (18) 

The result of these formulas applied to the block of Figure 7 is shown in Figure 10. 

(E = 8.5×107 N/m2, ρc = 2400 kg/m3, ρs = 1900 kg/m3) The agreement between Figures 8 

and 10 is reasonable. The calculated resonance frequency is about 90% of the measured 

value. The displacement amplitude without side filling is close to the measured value, 

however, the calculation underestimates the amplitude if side filling is applied. 
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5.2 Horizontal stiffness and damping of a soil supported block 

Consider a block resting on soil with side filling (Fig. 11). The horizontal excitation of the 

block due to a horizontal force on top of the block causes shifting and rotation (rocking). 

The equation for horizontal dynamic equilibrium is 
 

+ − φ − =
2

2
( ( ))h

d x
m k x p q F

dt
. (19) 

   

      Figure 10. Calculated vertical displacement amplitude of the concrete 

      block enclosed by four levels of sand (compare with Fig. 8) 

 

Dynamic moment equilibrium gives 

( )φ + φ − − φ − − = −
2 3

2
( ) ( ) ( )

12v h
d LB

I k k x p q p q F H p
dt

, (20) 

where the mass m and the rotation inertia I of the concrete block are 

= ρ

= ρ + − −2 21 1
12 3

( ( ))

c

c

m L BH

I L BH B H p H p
 

The equations are identical to the equations for a dynamically excited system with two 

degrees of freedom 1X and 2X . 
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μ
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 Figure 11. Idealisation of rocking and shifting of a soil supported block 
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This is an often solved system [6, 7]. With the following substitutions Eq. 19 and 20 are 

transformed into Eq. 21. 
 

= = − φ

= =
−

= =
−

−
= =

−

1 2

1 2 2

3

1 2 2

1 2

( )

( )

12( )
( )

v
h

X x X p q
I

m m m
p q

k LB
K k K

p q
F H p

F F F
p q

 (22) 

The mass m needs to be increased with the added mass of the soil. This is the same as for 

the vertical vibration. 
 

[ ]= ρ + ρ + + + +1 0.3 ( 0.6 )( 0.6 ) 0.1 2( )c s sm LHB B L B B B Bh L B  (23) 

= + +1 0.25 4 2( )sK E LB h L B  (24) 

 

The factor 1K has been tailored to obtain the best possible agreement with the experimental 

results. The positions p and q have been estimated at = 0.25p H , = 0.25 sq h . The 

mass 2m needs to be increased with the added mass of the soil. 

+ +
= ρ

−

2 2

2 2
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12( )
s

c
B h H

m LBH
p q

 (25) 

+ +
=

−

2 2

2 2
( 4 ) ( 2 )

0.11
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s sB h L B h

K E
p q
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The factor 2K has been tailored to obtain the best possible agreement with the experimental 

results. The quotients 1

2

m
m

and 1

2

K
K

are used to obtain the resonance frequencies. A quick 

method is to use the graphs for two mass spring systems, for example in literature [6 p. 42]. 

Damping of vibrations in the horizontal direction can be split in damping c1 due to 

horizontal sliding and the damping c2 due to rotation. The following values give 

satisfactory results. 

 

= ×1 1 10.04 2c K m  (27) 

= ×2 2 20.13 2c K m  (28) 

 

     Figure 12. Calculated horizontal displacement amplitude of the concrete 

     block enclosed by four levels of sand (Compare with figure 9) 
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 − ω + + + + + ω + ω =

22 2
1 2 1 2 2 1 1 1 2 2 12

1

( ) [ ( ) ]F m K K F K F c c F c
X

N
 

 + − ω + + ω + ω =

22 2
1 1 2 1 1 1 1 2 12

2

( ) [ ]F K F m K F c F c
X

N
 (29) 

where, 

= − ω + − ω + + − − ω +

+ ω − ω − + + + ω − ω +

2 2 2 2 2
1 1 2 1 2 1 1 2

2 2 2
1 2 1 2 1 2 1 1

[( )( ) ]

[ ( ) ( ) ( )]

N m K m K K K c c

c m K K c c m K
 (30) 

 

The amplitude of the horizontal displacement at the top of a foundation block is 
 

= + φ −( )tx x H p . (31) 

The results of these formulas applied to the block of Figure 7 are shown in Figure 12. 

(E = 8.5×107 N/m2, ρc = 2400 kg/m3, ρs = 1900 kg/m3) 

6 Individual piles 

Tests have been performed to determine the horizontal and vertical dynamic stiffness of 

concrete foundation piles. The piles had square cross-sections of 280×280, 350×350 and 

450×450 mm2. The elasticity modulus of the soil was 810 N/mm2 . De elasticity modules of 

the concrete was × 104 10 N/mm2. The piles were harmonically excited by horizontal and 

vertical forces. The results of the horizontal excitation are shown in Figure 13. Clearly, the 

peak values in the graphs strongly depend on damping of the soil. For the purpose of 

determining the pile stiffness the accuracy of these peak values is not important.  

 

The horizontal dynamic stiffness has been obtained by extrapolation of the measured 

motion to a zero frequency. Those values are approximated by an expression, derived from 

elastically supported beams. The support stiffness is [5] 

=
3 1
4 40.2 s ck E E D . (32) 

 

where, sE is the elasticity modulus of the soil, cE is the elasticity modulus of the pile, D is 

the diameter or width of the pile. Eq. 32 has been derived for piles with a free end. If the 

pile head is clamped and can translate only then the stiffness is [5] 

=
3 1
4 40.4 s ck E E D . (33) 
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Only if vibrating with a frequency close to 45 Hz, the stiffness is reduced due to dynamic 

behaviour. This is a combined pile-soil effect. 

Also the vertical dynamic stiffness of the piles has been tested, but the results are 

inconclusive (Fig. 14). The displacements do not show a resonance peak. Apparently, the 

damping is more than the critical damping. The derived vertical stiffness for dynamic 

excitation is = × 84 10vk N/m. 

7 Pile foundation experiments 

Four reinforced concrete foundation piles are fixed to reinforced concrete foundation plate 

(Fig. 15). The piles have cross-sections of 0.35×0.35 m and lengths of more than 10 m. The 

plate has a thickness of 1 m and a length and width of 2.5 m. Three dynamic tests have 

been performed in which the foundation has been exited harmonically in a horizontal 
  

 

    Figure 13. Horizontal displacement amplitude of pile heads 

    as a function of the frequency 
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     Figure 14. Vertical displacement amplitude of pile heads as a 

     function of the frequency 

 

         

           Figure 15. Measured horizontal displacement amplitude of a reinforced concrete 

           pile foundation 
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direction; 1) without soil around the sides of the plate; 2) with soil around the plate; 3) with 

soil around the plate and loaded in a direction perpendicular to the previous tests. The 

mass and damping of the soil around the foundation plate have a strong influence on the 

vibrations (Fig. 15). 

As an example the resonance frequency is calculated of this foundation without soil at the 

edges. Foundation mass 2.5×2.5×1×2400 = 15000 kg 

Mass of the soil below the foundation ρ 0.3s BLB = 1600×0.3×2.5×2.5×2.5 = 7500 kg 

Horizontal stiffness of the piles (Eq. 33) × × × × = ×
3 1

8 10 84 44 0.4 (10 ) (4 10 ) 0.35 2.5 10 N/m 

Resonance frequency
×= = =

π π +

81 1 2.5 10
16.8

2 2 15000 7500
k

f
m

Hz 

This is close to the measured frequency (Fig. 15). 

In some tests the foundation was excited vertically (Fig. 16). A resonance peak was not 

observed. The amplitudes are larger at higher frequencies. The soil around the reinforced 

concrete plate has no influence on the amplitudes. 

8 Vibration of the surrounding soil 

Vibrations of foundations and the surrounding soil need to be limited to a for people 

acceptable level. Figure 17 shows the perception of vibrations as a function of the 

acceleration and the frequency. In many situations – such as houses and offices – people 

should not feel the vibrations. This means that accelerations less than −210 m/s2 are  
 

 

   Figure 16. Measured vertical displacement amplitude of a reinforced 

    concrete pile foundation without soil next to the plate 
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Figure 17. Perception of vibration (Table 2) [7] 

 

Table 2. Perception levels of Figure 17 [7] 

 perception acceptability 

in buildings 

structural effects examples 

A very unpleasant not acceptable danger of collapse - earthquake 

B unpleasant not acceptable local damage - emergency 

  braking of a car 

C strongly noticeable hardly acceptable cracks in masonry - in a tram or 

  elevator 

D well noticeable only rough work small cracks - start of 

  seasickness 

E noticeable shortly in rooms no influence on building  

F hardly noticeable acceptable no influence  

G not noticeable    

2

amplitude
of the
acceleration

[m/s ]

frequency [Hz]



 48

always acceptable. The inclined lines show the displacement amplitude of a harmonic 

vibration. 

 

In theory, the amplitude of a Rayleigh wave reduces with one over the distance to the  

vibration source, however, due to damping in soil the reduction is considerably stronger. 

Collected experimental results are shown in Figure 18. The soil amplitude w at a distance r 

can be calculated by [1] 
 

−α −= ( )r ro o
o

r
w w e

r
, (34) 

 

where ow is the amplitude at the foundation, r is the distance to the foundation, or is half 

the foundation width and α = 0.03 m-1 approximately (Fig. 18). 

 
 

 

                        Figure 18. Amplitude of the vertical surface displacement [in] as 

          a function of the distance to the vibration source [ft] [1, p. 246] 
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9 Concluding remarks 

Machine foundations on soil with or without foundation piles can be analysed as one or 

two mass-spring systems. The harmonic loading by rotating machines and piston engines 

can be determined accurately. Clear formulas are available for the stiffness, equivalent 

mass and damping. The natural frequencies and displacement amplitudes can be obtained 

by graphs and a hand calculator, without complicated computer software. The amplitude 

can be evaluated as acceptable or not. This provides an engineer with the tools to develop a 

sound skill in machine foundation design. 

Soil at the sides of foundations considerably increase the damping and strongly reduce the 

displacement amplitudes. The vertical vibrations are well damped by the soil, but the 

horizontal vibrations can be disturbing even at a large distance from the foundation. 
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Appendix 

This appendix contains a calculation example of a turbine foundation. The foundation 

consists of three connected parts made of reinforced concrete supported by long 

foundation piles (Fig. 19). The total length is 31.65 m. The soil modulus of elasticity is E 

= 810 N/m2. This is the average of measurements at several locations in the Netherlands. 
 

 

Figure 19. Turbine foundation dimensions 

 

Part 1: Auxiliaries compartment support 

Concrete mass   1.85×5.00×8.65×2400 = 1.92× 510 kg 

Static load   2 (2.9+5.8+11.5+11.5) 410 = 63.4× 410 N (64700 kg) 

Supported by 8 piles 

 

Part 2: Turbine support 

Concrete mass   1.85×6.20×13.95×2400 = 3.84× 510 kg 

Static load   2 (4.5+44.5+57.8+7.0+7.0) 410 = 2416000 N (246000 kg) 

Supported by 15 piles 

 

Part 3: Generator support 

Mass of the concrete  3.33×4.70×9.05×2400 = 3.39× 510 kg 

Static load   2(27.5+45.8+47) = 240.6× 410 N  (245000 kg) 

Supported by 10 piles 
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Totals 

Concrete mass   9.15× 510 kg  (900× 410 N) 

Static load   545.6× 410 N  (5.56× 510 kg) 

Supported by 33 piles 

 

Centre of gravity 

The centre of gravity is in the axis of symmetry. 

From the bottom of the concrete 

1.92× 510 ×0.925 + 0.647× 510 ×5.114 = 5.08× 510 kg m 

3.84× 510 ×0.925 + 2.46× 510 ×5.114 = 16.13× 510  

3.39× 510 ×1.665 + 2.45× 510 ×5.114 = 18.16× 510  

(5.08+16.13+18.16) 510 /((9.15+5.56) 510 ) = 2.68 m 

 

From left side of the concrete 

1.92× 510 ×4.325 + 0.647× 510 ×4.325 = 11.09× 510  kg m 

3.84× 510 ×15.65 + 2.46× 510 ×15.65 = 97.03× 510  

3.39× 510 ×27.12 + 2.45× 510 ×27.12 = 158.11× 510  

(11.09+97.03+158.11) 510 /((9.15+5.56) 510 ) = 18.11 m 

 

Displacement in the z direction 

Vertical stiffness of one pile is 4× 810 N/m. The soil has settled around the piles and is not 

in contact with the foundation. Therefore, it is not included in the stiffness and not 

included in the mass. Damping in the vertical direction is critical damping.  

Resonance frequency in the vertical direction
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Rotation around the x axis and displacement in the y direction 

Moment of inertia [9] 

I = { + + −2 2 21 12(5.0 1.85 ) (2.64 0.925) } 9.15× 510 + 

     + { + + −2 2 21 12(3.5 3.4 ) (5.11 2.64) } 5.56× 510  

   = 48.54× 510 +34.03× 510 =  82.57× 510  kgm2 

Horizontal stiffness of one pile is 6.2× 710 N/m. 

hk = 33×6.2× 710 + 2×1.1× 810 √(31.61×1.85) = 2.05× 910 +1.08× 910 = 3.13× 910 N/m 

This resistance of piles and ground together act at 1.08×0.6/3.13 = 0.21 above the base. 

p = 2.68 – 0.21 = 2.47 m 
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vk = 14×4× 810 = 56× 810 N/m 

a = 4 m 

The mass 1m = 9.15× 510 +5.56× 510 = 14.70× 510 kg 

2m = 82.57× 510 / 22.47 = 13.53× 510 kg  1m / 2m = 1.08 

The added mass of the soil is neglected because it has little influence on 1m / 2m . 

1K = 8.36× 910 N/m 

2K = 56× 810 ×2 24 /(2 2.47 ) = 7.34 × 910 N/m  1K / 2K = 1.14 

 

 

Figure 20. Pile positions [m] 

 

The resonance frequency in the y direction is  

1f = 1.7/2π√8.36× 910 /14.7× 510 = 6.6 Hz. 

The resonance frequency around the x direction (rocking) is 

2f = 1.5/2π√8.36× 910 /14.7× 510 = 20.4 Hz. 

 

Rotation around the y axis and displacement in the x direction 

I = { ( )+ + − 22 21 12(31.65 1.82 ) 18.11 15.80 } 9.15× 510 + 

   +{ ( ) ( )+ + − 22 21 12 31.65 3.5 18.11 15.80 } 2.45× 510 = 9.24× 710 kgm2 

hk = 33×6.2× 710 + 810 √2×5×1.82 = 2.046 × 910 + 0.43× 910 = 2.476× 910 N/m 

The resistance of ground and piles act together at 0.76/2.476×1.2 = 0.36 m above the base. 

p = 2.68 – 0.36 = 2.32 m 

vk = 2×4× 810 = 8× 810  

a = 2/3×31.61 = 21.07 m 

The mass 1m = 14.70× 510 kg 

2m = 9.24× 710 / 22.32 = 171.7× 510 kg  1m / 2m  = 0.085 

1K = 2.814× 910 N/m 
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2K = 221.07 ×8× 810 /2× 22.32 = 3.30× 1010   1K / 2K = 0.085 

The resonance frequency for displacements in the x direction is 

1f = 0.65/2π√2.814× 910 /14.70× 510 =  4.53 Hz. 

The resonance frequency around the y direction (rocking) is 

2f = 1.5/2π√2.814× 910 /14.70× 510 = 10.4  Hz. 

 

Rotation around the z axis 

The distance between the z axis and the outer pile is 18.3 m. 

Horizontal stiffness of one pile is 6.2× 710 N/m. 

Assume a rotation α around the z axis. 

The moment around the z axis is 

2×6.2× 710 α ( + + + + + + + +2 2 2 2 2 2 2 2 218.3 16.0 13.5 11.3 11.0 9.2 7.3 5.5 3.9 )+ 

+3×6.2× 710 α ( + + + +2 2 2 2 29.5 6.7 3.9 0.9 2.2 ) = 18.3× 1010 α Nm 

The rotation stiffness of the piles is 18.3× 1010 α /α  = 18.3× 1010 Nm/rad 

The rotation stiffness of the sand is × ×810 1.1 31.65 2 /3 = 0.48× 1010 Nm/rad 

The total rotation stiffness is 18.8× 1010 Nm/rad 

Polar moment of inertia 1/12 (9.15× 510 +5.56× 510 ) 231.65  = 1.23× 810 kgm2 

The resonance frequency is
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Summary of frequencies 

The resonance frequencies are: 

Displacement in the direction of the z axis 1f = 15.1 Hz   damping D = 1      (piles vert.) 

Rotation around the z axis 2f = 6.23 Hz D = 0.16 (piles hor.) 

Displacement in the direction of the x axis 3f = 4.53 Hz D = 0.16 (piles hor.) 

Rotation around the y axis 4f = 10.4 Hz D = 1      ( piles vert.) 

Displacement in the direction of the y axis 5f = 6.60 Hz D = 0.25 (soil) 

Rotation around the x axis 6f = 20.4 Hz D = 1      ( piles vert.) 

 

Static displacements 

The displacement caused by a static force of 1 N in the x direction. This load acts at the y 

axis at 9.05 m from the centre of gravity and 5.114 – 2.64 = 2.47 m above the centre of 

gravity. 

Vertical displacement and rotation 

w = 1/(33×4× 810 ) + 1/(10×4× 810 ) = 1/52× 810 m/N 
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Horizontal displacement in the x direction and rotation 

w = 1/(2.814× 910 )+ 2.47/(9.05×3.42× 1010 ) = 1/2.0× 910 m/N 

Horizontal displacement in the y direction 

w = 1/(8.36× 910 ) + 2.47/(2×56× 810 ) = 1/2.94× 910 m/N 

   

Dynamic forces and displacements 

The unbalance of the generator in the y direction is 275.2 kN. 

w = 275.2× 310 / 2.94× 910 = 9.55× −610 m. The dynamic displacements are smaller because 

of the resonance frequency of 6.6 Hz and the loading of 50 Hz. 

w = 9.55× −610 × (6.6/50)2 = 0.17 × −610 m = 0.17 μm 

 

The foundation will rotate around the z axis. The moment causing this rotation is 

2×137.6×21 = 0.58× 710 Nm. The total resistance against rotation of soil and piles is 

18.8× 1010 Nm/rad. The rotation is  0.58× 710 /18.8× 1010 × (6.23/50) 2 = 0.48× −610 rad 

The maximum motion of one side is 0.48× −610 × 31.45/2 = 8× −610 m = 8 μm. 


