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Elementary and advanced modelling of 
the splitting strength of timber 
connections 

J.C.M. Schoenmakers 

Eindhoven University of Technology, the Netherlands 

The load-bearing capacity of a timber member loaded perpendicular-to-grain by a connection 

is governed by either the embedment strength, the bending yield strength of the steel 

fasteners, or the splitting strength of the timber. Only coarse models for predicting the 

splitting strength are implemented in structural design codes, if any. It is of great importance 

for engineers to avoid splitting failure because it is often a brittle failure mode. This paper 

presents an overview of analytical, numerical and experimental research on the splitting 

strength of timber connections loaded perpendicular-to-grain by mechanical connections, 

conducted at Eindhoven University of Technology. 

Based on the theory of fracture mechanics an analytical expression for predicting the splitting 

strength is derived. This analytical expression is applied to members loaded by a single 

connection composed of dowel-type fasteners such as nails, dowels and bolts. The expression 

is calibrated with experimental results, after which its prediction ability is verified using 

another set of experimental data. For this purpose, performed experiments as well as results 

presented in literature are used (new experiments should be considered complementary in 

most cases). To confirm the physical behaviour predicted by the analytical expression, a 

numerical study is performed based on linear and non-linear fracture mechanical finite 

element models. From this it follows that the energy associated with fracture of connections 

perpendicular-to-grain is close to the mode I fracture energy. Amongst others, the number of 

fasteners and the loaded edge distance of the furthest row of fasteners are significant 

parameters. 
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1 Introduction 

The problem involved with mechanical connection with dowel-type fasteners (e.g. nails,  

dowels) is the development of stress concentrations at the interface between fasteners and 

timber. High local peak stresses cause high stress gradients in the vicinity of the fastener, 

to which timber is vulnerable due to its low strength properties, in particular 

perpendicular-to-grain. Therefore, tension forces perpendicular to the grain should be 

avoided. However, this is not always possible as show in Figure 1. 

 

 

Figure 1. Timber elements exposed to tension forces perpendicular-to-grain by mechanical 

connections (Re-sketched after Ehlbeck and Görlacher (1995)) 

 

The connections of Figure 1 load the horizontal member in tension perpendicular-to-grain 

and shear, what may result in crack initiation and propagation parallel-to-grain direction. 

This may limit the load-bearing capacity considerably. Splitting failure of timber can be 

characterized as a brittle failure mechanism, which results in sudden failure of the 

structural element without warning by means of excessive deformation prior to structural 

collapse. Therefore, crack initiation and propagation are key factors in the behaviour of 

such connections and important for building practice regarding safety. In addition to 

splitting failure (fracture), the connection itself can be governing the load-bearing capacity 

what typically is a different failure mechanism. Hence, the lowest of either the connection 

capacity and the splitting capacity determines the load-bearing capacity. 
 

The objective of this research is to develop improved design rules to account for the 

splitting failure mechanism (fracture) induced by mechanical connections perpendicular- 

to- grain. Increased predictability of the load-bearing capacity in various applications 

results in more transparent safety margins and in more cost-effective structures as 

conservatism in design can be minimized. This can improve the overall safety of 

connections applied in timber structures. Also reduction of timber element dimensions 
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may be possible in some cases, for instance by a reduction of the number of fasteners 

leading to smaller connections and consequently, less timber is needed to satisfy the 

minimum requirements for edge and end distances and spacing. 
 

Comprehensive experimental investigations (in total up to 900 experiments) regarding the 

splitting capacity have been reported in literature (e.g. Möhler and Lautenschläger (1978), 

Ehlbeck and Görlacher (1983) and Ballerini and Giovanella (2003), amongst others). Also 

models for the load-bearing capacity in case of splitting failure have been reported (e.g. 

Van der Put (1992b) and Van der Put and Leijten (2000), Jensen (2003), Jensen et al. (2003)). 

Some are based on theoretical considerations (Fracture Mechanics - FM). Most 

experimental programs lack to recognize the different failure mechanisms. Hence, models 

to predict the splitting capacity often do not correspond to the experimental observations 

since other failure mechanisms than splitting have been taken into consideration. This is 

clarified in chapter 2. 
 

Analysis of the embedment strength and the bending yield strength of steel fasteners are 

not included in this paper. These subjects are studied in Schoenmakers (2010). 

2 Differences between fracture and other failure mechanisms 

For clarification, a case study is presented in this section. The case under consideration is 

shown in Figure 2 where the dowel-type fasteners are loaded in double shear. The beam 

cross sectional area equals  t h = 45 × 222 mm² and the span  l = 1600 mm. The relative 

height α is defined as the ratio of the loaded edge distance from the furthest row eh of 

fasteners and the beam depth  h, therefore, α = eh
h

. 

 

 
 

Figure 2. Situation discussed including two possible fastener configurations 
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The governing failure mechanism appears to depend on only three parameters, namely the 

number of fasteners, fastener diameter and relative height. Figure 3 shows the ultimate 

failure load as function of the number of fasteners, based on the analytical expressions 

corresponding to each failure mechanism (Schoenmakers (2010)). For comparison, similar 

situations are included with different fastener diameter d. A small number of fasteners 

(e.g. n < 4) results usually in relatively high embedment stresses underneath the dowel 

type fasteners. High embedment stresses usually result in a ductile failure mechanism 

since the embedment strength is reached prior to reaching the splitting strength. If the 

number of fasteners is increased (e.g. n > 15) the embedment stresses are usually rather low 

and hence, the splitting strength of the member is reached prior to reaching the 

embedment strength. Since the embedment strength increases with deceasing fastener 

diameter, the diameter is of high importance as well. Aside from connection failure, 

conventional failure mechanisms such as bending of the timber member may be governing  

as well. Yet, the fastener diameter (in relation to the timber width) also determined 

whether crushing of the timber (EYM I, fastener remains straight) or yielding of the 

fastener (EYM IV, plastic hinges in the fastener) occurs. 

 

 

Figure 3. Ultimate load and associated failure mechanisms in four situations, as a function of the 

number of fasteners 
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Figure 4 shows some typical failure patterns observed from tests with rather slender nails 

(t/d ≈ 10). All beam specimens were of equal geometry. The failure mode typically 

depends on the number of nails and hence. Few nails (n = 5) (Figure 4b and d) result in 

plastic hinges and substantial timber crushing. Increasing the number of nails results in 

splitting failure while the embedment zone remains undamaged (Figure 4a and c). 

 

 

Figure 4. Typical failure patterns including the loading direction; (a) splitting, n = 12; (b) plastic 

hinges, n = 5; (c) splitting, n = 20; (d) plastic hinges, n = 5 
 

What should be noticed from the charts presented is that splitting failure of a timber 

member is typically independent of the number of fasteners a connection is composed of. 

Also even rather slender fasteners (t = 45 mm, d = 4 mm) do not necessarily develop 

plastic hinges if the splitting strength is governing. This behaviour of dowel-type fastener 

connections is confirmed by experiments as discussed in Schoenmakers (2010) in detail. 
 

Figure 5 shows typical load-slip measurements. The slip of the connection can be regarded 

as the plastic deformation (crushing) of the timber fibres in the embedment zone. In terms 

 

 

Figure 5. Typical experimental load-slip responses (a) linear-elastic response - splitting; 

(b) nonlinear elastic response - connection failure 

Representative
Individual test α = 0.70

 = 4 mmd
 = 5x1n

α = 0.47
= 4 mmd
= 5x5n

Representative
Individual test
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of load-slip behaviour substantial differences among the failure mechanisms are observed 

as well. In case of splitting, the load-slip behaviour is linear-elastic up the failure, while in 

case of connection failure the response is elasto-plastic with significant hardening. 

3 Analytical modelling of splitting strength 

The splitting capacity is derived analytically utilising Linear Elastic Fracture Mechanics 

(LEFM). In this section, first the theory of the compliance method is outlined followed by 

an application of the theory to the situation of a single connection located at mid span of a 

simply supported beam. After that, the model is calibrated with experimental data 

resulting in an accurate prediction model of the load-bearing capacity. The model validity 

is shown by comparing (other) experimental data and the model predictions. 

3.1 LEFM Compliance method 

Crack propagation is analysed by considering the energy balance before and after a virtual 

crack extension. According to basic LEFM, a linear-elastic body of constant width t 

containing a crack of length λ, subjected to a (fixed) concentrated load F causing a 

displacement δ it follows for the energy released during an infinitesimal small crack 

extension: 

δ δ   = − = − =  λ λ λ λ λ  

21 1
2 2

ext eldE dE d F d F dC
F

t d d t d d t d
G  (1) 

 

where C is the compliance (reciprocal stiffness) of the specimen. In LEFM the energy 

release rateG is defined as the decrease in potential energy of an element as a result of 

such a crack extension. The critical load for crack propagation (crack growth) now results 

from equation (2) (e.g. Gdoutos (2005)), by assuming an energy-based fracture criterion (i.e. 

G  = cG - the energy release rate reaches its critical magnitude). 
 

=

λ

2 c
crit

t
F

dC
d

G
  (2) 

The critical energy release rate cG basically is a material property and dependant on the 

fracture mode exposed to. Considering equation (2) reveals that the critical crack load 

critF can be predicted by deriving expressions of the compliance change due to 

infinitesimal crack extension 
λ

dC
d

. 
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3.2 Analytical derivation 

Figure 6 shows the statics of half the beam structure (the total beam length is 2l). The 

model consists of an uncracked beam part (part 1) and a cracked beam part, the latter part 

modelled as two beam segments (part 2 and 3). All segments are modelled using 

Timoshenko-beam elements. At the crack tip, plane sections are assumed to remain plane 

according to Bernoulli’s hypothesis. This is modelled by an element of infinite bending 

stiffness. 
 

 

Figure 6. Modelling of structure; (a) statics of half the beam; (b) deformed shape and position of 

beam segments 

 

By means of free-body diagrams, expressions for the internal forces and moments are 

derived for each beam segment, expressed in the crack length λ. The displacements and 

angular rotations are determined by an (strain) energy method and Castigliano’s theorem 

(Timoshenko and Goodier (1951)). Having closed-form expressions of the internal forces 

and moments the compliance of the beam is expressed in terms of the crack length λ by 

equation (3). 

 δ   λ   = = − λ − +  − −       α  α    

3 3

3
6 1 1 1

1 1
5 3 12

A l
C l

F Gth EI
  (3) 

 

where the moduli of elasticity and rigidity are expressed as E = 11E  and G = 12G , 

respectively (1st direction is parallel-to-grain, 2nd and 3rd directions both perpendicular-to-

grain). Taking the derivative with respect to λ and substitution in equation (2) results 

equation (4) after multiplication with a factor 2 to account for symmetry. Equation (4) is the 

same as found by Jensen (2003) and by Van der Put (2005), by adopting the moment-area 

method. 
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Equation (3) shows that the compliance change 
∂
∂λ
C

is independent of the beam span. 

Consequently, equation (4) holds for any connection located at mid span of a simply 

supported beam of arbitrary length, where the crack length λ is the only unknown 

variable. It should be recognized that in case of α = 0 the ultimate load ultF = 0. In this case, 

the loaded edge distance eh = 0 meaning basically that the connection does not exist, and 

hence, the ultimate load has no meaning. 

 

The maximum critical load corresponds to a situation with λ → 0, i.e. only infinitesimal 

small cracks are present which have not yet propagated. In terms of FM, this implies the 

crack is always in an unstable equilibrium, i.e. 
∂ −

∂λ
( )cG G

> 0. Consequently, the energy 

released during crack propagation is higher than the critical energy release rate, and 

remains higher. Therefore, the ultimate load can be calculated by the reduced equation (5), 

resulting from equation (4) with λ → 0. For small crack lengths (λ → 0) Bernoulli’s 

hypothesis does not hold. Assuming the Saint Venant length (at the load-introduction 

point) to be approximately equal to the depth of beam part 3 (hα) shows that any 

discrepancy between model and reality will be of minor effect on the critical load. 
 

( )
α

= =
− α

2 2
3

1
5

c
ult crit

G h
F F t

G
  (5) 

Figure 7 presents the critical load as function of the ratio half crack length/depth beam 

part 3. Since the equilibrium state is unstable in all conditions, the ultimate load is equal to 

3.3 the critical load at crack initiation. Therefore, the crack extension rate is of minor 

interest. Model calibration 

The parameter cGG typically represents the square root of the product of the modulus of 

rigidity and the critical energy release rate. Van der Put and Leijten (2000) suggest using 

the parameter cGG as a calibration parameter derived from experiments. This more 

robust approach is justified since the mode-mixture governing the mixed-mode fracture 

energy is generally unknown. Only the lower and upper bound can be given (both pure 

mode I and mode II fracture energies), hence ≤ ≤Ic c IIcG G G , where ≈ 4IIc IcG G according to 

tests performed by Stefansson (2001). 



 95 

 

Figure 7. Ultimate load as function of the ratio half crack length and relative height 

 

This calibration of the apparent fracture parameter cGG is performed extensively based 

on both experiments reported in literature and tests performed at TU/e. Over 

approximately 350 experiments were taken into consideration. The fracture parameter of 

all glulam specimens is statistically equal. Therefore, the average cGG = 14.9 N/mm1.5 

(cov = 22.3%) is taken as calibration parameter. For sawn specimens, it is shown that 

specimens tested at TU/e are different from specimens reported in literature. Therefore, 

the average cGG = 13.6 N/ mm1.5 (cov = 16.7%) based on the Eindhoven results only is 

considered as calibration parameter. Accordingly, the ultimate load (splitting capacity) is 

predicted by equation (6): 
 

α= =
− α

2 2
3

(1 )
5

ult crit c
h

F F t GG  ,   
= 


1.5

1.5

14.9 N/mm  for gluelam

13.6 N/mm  for sawn     
cGG  (6) 

 

The physical soundness of the results was verified by estimating the expected range of 

both G and cG by means of statistics and statistical tests of significance (Schoenmakers 

(2010)). 

Prior to calibration, it is verified that the experiments taken into consideration failed by 

splitting, by performing a detailed analyses of experiments in terms of governing failure 

mechanism using the models for both splitting capacity (as discussed in this article) and 

embedment strength (discussed in Schoenmakers (2010)). Model calibration studies (or 

explanation of test results) reported in literature mostly lack the distinction in failure 

modes observed (other failure mechanisms were included as well) and hence, these are of 

minor relevance (e.g. Ballerini (1999), Ballerini and Giovanella (2003), Ehlbeck et al. (1989)). 

In certain cases no attempts have been reported. 

critF
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3.4 Model validation 

The model validity was verified by comparing the predicted ultimate load and the 

experimentally observed ultimate load. In total, the model was compared with 899 

experimental observations provided in literature, including a variety of multiple fastener 

connections (Figure 8). Experimental data considered are presented by Reshke et al. (2000), 

Lehoux and Quenneville (2004), Habkirk and Quenneville (2006), Ballerini (1999), Ballerini 

and Giovanella (2003), Möhler and Lautenschläger (1978), Möhler and Siebert (1980), 

Ehlbeck et al. (1989), and Yasumura et al. (1987). In general, good agreement between tests 

and predictions was observed. 

 

 

Figure 8. Model predictions versus experiments reported in literature 

 

It should be recognized that the model calibration was based on a batch of approximately 

350 specimens (including TU/e-tests), while the model validity shown in Figure 8 is based 

on approximately 900 specimens (only reported in literature). At the characteristic level 

(design rule), the model can be used with cGG = 10.8 N/mm1.5 for glulam spruce 

and cGG = 9.9 N/mm1.5 for sawn spruce (Schoenmakers (2010)). 
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4 Numerical modelling of splitting strength with a discrete crack 

Generally, it is assumed the energy associated with fracture of connections perpendicular-

to-grain is close to the mode I fracture energy IcG . This is verified using two numerical 

approaches; a discrete crack approach (this section) and a damage mechanics approach 

using cohesive elements (section 5). Inherent to both approaches is that the future crack 

path should be known. In this case this is not a limitation since cracking will always occur 

in line with the row of fasteners furthest from the loaded edge. 
 

In this section the stress state of crack tips is evaluated by means of a discrete crack 

approach in the framework of FEM. The simulations use a 2D approach since 3D 

simulations as well as experiments show that the fasteners remain straight in case of 

splitting failure (Schoenmakers (2010)). By knowing the stress state, an estimate of the 

onset of cracking can be made using a fracture criterion. Basically, such an approach is in 

accordance with the classical fracture mechanics theory (Stress Intensity Factor (SIF) - 

approach, e.g. Gdoutos (2005)). 

4.1 Parts, elements and mesh 

Two connections are modelled: a single fastener connection using d = 10 mm diameter 

holes, and a multiple fastener connection of n = 3 × 4 fasteners of d = 6 mm, spaced 4d. The 

beam cross-section is 45 × 220 mm² with a span of 1600 mm. Only the fastener holes are 

modelled, not the fasteners themselves. Three relative heights are considered, α = (0.3, 0.5, 

0.7). All combinations of d and α have been modelled with the exception of d = 6 mm and α 

= 0.3, because in this instance the connection height is larger than the loaded edge distance 

which is physically impossible. The beam is meshed using fully-integrated hexahedral 

quadratic plane stress elements (CPS8 (ABQAUS v 6.7)). 

 

The crack itself is modelled using an embedded line (seam) along which duplicate nodes 

are assigned. In a discrete crack model exhibiting sharp cracks, the strain field becomes 

singular at the crack tip. Including this singularity improves the accuracy of the contour 

integral evaluations, and consequently, of the stress and strain output. Therefore, the crack 

tip is meshed by a ring of 16 triangular collapsed quarter point quadratic elements (CPS6) 

(Figure 9). Accordingly, a 
1
r

strain singularity is included by means of nodal translation 

(Figure 9b) with r the distance ahead of the crack tip. Local mesh refinement is adopted to 
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capture large stress concentrations to obtain accurate results for the SIFs, although not 

necessary for J-integral evaluation. Figure 10 presents the FE-model and the deformed 

shape, and a detail of the crack tip mesh. 
 

 

Figure 9. (a) (Regular) plane quadratic element; (b) Collapsed quarter point element 

 

 

 

Figure 10. Discrete crack model; (a) deformed shape; (b) mesh detail of crack tip 

4.2 Material properties 

The timber constitutive response is assumed linear-elastic in accordance with the basic 

assumptions of LEFM. This allows a contour integral evaluation in terms of energy release 

rate since in elastic cases it equals the evaluate J-integral (G  = J). Consequently, both can 

be estimated from the individual SIFs, (ABAQUS (2007)). The timber material is modelled 

using orthotropic elastic constants = = =11 22 1230, 16, 12000E E G N/mm². 

CPS8 CPS6

XSYMM: U1 = R3 = 0

Pinned support: U2 = 0
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4.3 Boundary conditions, interactions and load 

Due to symmetry, only half the specimen is modelled, and appropriate boundary 

conditions are specified at the symmetry plane (XSYMM, U1=R3=0). The pinned support 

prevents displacements in vertical direction. The load is introduced by a unit concentrated 

force at the pinned support. Kinematic coupling constraints are enforced preventing the 

holes from distorting (remain circular). In case of the multiple fastener connection, the 

displacements and rotations of all holes are coupled (and zero) using a multipoint 

constraint.  

4.4 Solution procedure 

ABAQUS/Standard is used as solver while the analyses are force controlled and 

geometrically linear (NLGEOMOFF). The stress state of the crack tip is evaluated using 

contour integrals. This requires defining the virtual crack extension direction, which is 

taken in line with the first principle beam axis, i.e. in line with the furthest row of fasteners 

from the loaded edge. According to ABAQUS (2007), multiple contours surrounding the 

crack tip are required to obtain an accurate solution, while the first and second contour 

should typically be ignored in elastic situations. Generally, the stress state of a crack tip is 

unique and highly dependent upon the crack length. Therefore, the crack length is 

extended manually and the stress state is computed for each pre-defined crack length. The 

size of the crack length increments varies among the simulations performed. 

4.5 Validation of FE-model and results 

Figure 11 presents the evolution of both mode I and mode II SIFs due to crack propagation 

associated with unit loading (F = 1 kN) (Unit SIF ik , (i = I, II) - no capital iK used to indicate 

this is the unit SIF). The numerical critical load is determined from the energy release rate 

(Figure 12b) by adopting the fracture criterion proposed by Wu (1967), i.e.: 
 

 
+ ≤ 
 

2

1I II

Ic IIc

K K
K K

  (7) 

 

Since the analyses are linear, the load, the energy release rate and SIFs are proportional, 

�and therefore, the critical load can be calculated by determining the load amplifier  to the 

unit load to satisfy the failure criterion ( ultF = Ω unitF ). Figure 12a presents the numerical 

ultimate load and the analytical ultimate load given by equation (6). 
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Figure 11. Unit stress intensity factors (Unit SIF); (a) mode I; (b) mode II 

 

 

Figure 12. (a) numerical critical load determined with mixed-mode fracture criterion suggested by 

Wu (1967); (b) unit energy release rate 

 

Figure 11 shows that the SIFs tend to decrease with increasing relative height α. Most SIFs 

tend to increase with increasing crack lengths after the crack length is sufficiently large 

( λ ≥  75 mm), indicated by the minimum (e.g. Figure 11 a). Estimating the ultimate load 

from the energy release rates suggests that in case of single fastener connections, the crack 

length may increase without resulting unstable crack propagation (indicated by a 

maximum in (Figure 12a)). Consequently, the critical crack length is approximately λcrit ≈ 

75 mm. Hence, the crack is in a stable equilibrium situation for smaller crack lengths. This 

is a result of the crack tip being still in Saint Venant’s length of the load-introduction. The 

cracks in the multiple fastener connection are always unstable. Both numerical and 

analytical ultimate loads agree well. Also the post-fracture behaviour governed by the size 
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of the cracks shows reasonable agreement, although the model presented suggests less 

decrease of ultimate load with increasing crack length. 

5 Numerical modelling of splitting strength with a progressive damage 
approach 

In this section progressive fracture is modelled by a damage mechanics approach using 

cohesive elements. It is chosen to model a n = 3 × 4 connection with d = 6 mm diameter 

fasteners, and a n = 5 × 5 connection with d = 4 mm fasteners since these connections have 

shown to fail in pure splitting. The beam cross-section is 45 × 220 mm² and the span is 1600 

mm. 

5.1 Parts, elements and mesh 

The FE-model consists of four 3D solid deformable parts. The timber beam is separated in 

a top and bottom part. In-between, a fracture layer is modelled along the full ligament 

length. The bottom beam part and the bottom side of the fracture layer are kinematically 

coupled using a tie-constraint. The same is done for the top layer side. This method allows 

both independent meshing and mesh densities of both beam parts. These tie-constraints 

behave like a master-slave contact pair in which the fracture layer acts as the slave. Due to 

symmetry, only one quarter of the specimen is modelled. Figure 13 gives an overview of 

the FE-model (for clarify, the symmetry planes are left out). 

 

 

 

Figure 13. FE-model using a cohesive fracture layer; (a) all individual parts extracted; (b) meshed 

half FE-model and detail of connection zone 
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The timber and steel are meshed using hexahedral linear continuum elements using 

reduced integration schemes and enhanced hourglass control (C3D8R). The fracture layer 

is meshed using linear cohesive elements (COH3D8). After meshing, the coordinates of all 

nodes of the fracture layer are adjusted exactly along the ligament, resulting the 

geometrical thickness of the cohesive layer is reduced to zero (the top and bottom surface 

are geometrically equal) ( Figure 14). Mesh convergence studies show that only three 

elements over the beam thickness are sufficient to obtain mesh convergence (since the 

fasteners remain straight). 

 

 

Figure 14. Adjusted nodes providing a geometrical zero thickness of single cohesive  element 

5.2 Material properties 

Preliminary simulations show that the timber mainly remains in the elastic stage during 

the entire analyses. The steel fasteners remain straight during the analyses and hence, 

elastic constitutive responses are implemented. For the fracture layer a traction-separation 

model is adopted to accurately model the fracture performance of timber where  linear-

elastic behaviour up to attaining the ultimate load is assumed. 

 

Up to damage initiation, the response is linear-elastic governed by an elastic constitutive 

matrix [ ]oK relating the nominal tractions (stresses) to the nominal strains across the 

interface. 

Mixed-mode fracture tests are reported by Stefansson (2001). In these tests, the notched 

timber specimen was loaded at different ratios of both normal and shear stress. During 

crack propagation, the crack lengths and opening displacements were recorded. 

Based on these test tests, the components of [ ]oK are considered uncoupled, 

with nK = 150 N/mm² and sK = tK = 100 N/mm², where indices (n, s, t) represent 
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the normal, the first and the second shear direction, respectively. Damage initiation is 

defined in terms of a quadratic interaction equation combining both normal and shear 

tractions (equation (8)). 
 

     
     + + =     
     

2 2 2

0 0 0
1n s t

n s t

t t t

t t t
  (8) 

In this equation it , (i = s, n, t)are the traction components in either normal or one of both 

shear modes, and 0
it , (i = s, n, t)their corresponding critical values, i.e. the tensile strength 

perpendicular-to-grain 0
it = ;90tf =3.0 N/mm² and shear strength 0

st = 0
tt = ;12vf = 10.0 

N/mm² , respectively. The angular brackets indicate that an average value over the 

elements volume is computed. Figure 15 presents the quadratic interaction equation (8) 

and the mixed-mode test data reported by Stefansson (2001). For comparison, the 

maximum stress criterion and the mixed-mode interaction equation suggested by Wu 

(1967) are included. Comparison of the mixed-mode data and the quadratic criterion 

implemented (Figure 15) suggests that the numerical solution will overestimate the 

experimental ultimate load, in general. Since fracture in the cases studied is close to mode I 

fracture (normal stresses governing), no attempts have been made to implement a user-

defined damage criterion (damage models presented are available in ABAQUS) as results 

were sufficiently satisfying (despite Figure 15 suggesting a linear relation). 
 

 
 

Figure 15. Damage initiation criteria 

 

The damage evolution (softening) law describes the rate at which the material stiffness is 

degraded once the corresponding initiation criterion is satisfied. An energy-type law with 
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the fracture energy as the area enclosed by the softening curve is implemented. In this 

respect, the mixed-mode fracture criterion according to Petersson (2002) is adopted where 

the critical strain energy release rates are taken as IcG = 1
4 IIcG = 300 J/m². 

 

The overall damage in the material is represented by a scalar damage variable D. Initially, 

D = 0 (undamaged)  and it evolves monotonically towards D  = 1.0 (fully damaged). It 

therefore defines the post-damage initiation behaviour since it affects the individual 

traction and stiffness components. Consequently, progressive damage is characterized by 

progressive degradation of the material stiffness, driven by the damage process. 

Accordingly, the traction components are defined by equation (9) (reference can be made 

to Figure 16 for parameters): 
 

 δ δ ≤ δ
  = − δ δ < δ < δ = 
 

δ ≥ δ  

max 0

0 max

max

(1 ) ( , , )

0

i i i i
f

i i i i i i
f

i i

K

t D K i n s t  (9) 

 

Despite that timber exhibits approximately exponential softening behaviour it is chosen to 

use an energy-equivalent linear softening model to improve convergence. This can be 

noticed from Figure 16; if exponential softening is used, the critical crack opening in certain 

cases may become excessive as a result of a both fixed critical stress and energy, while the 

damage variable is mixed-mode dependent. It is recognized that adopting linear instead of 

exponential softening affects the degradation rate. 

 

For numerical convenience in mixed-mode conditions, the individual displacement 

components are combined by an effective displacement according to equation (10): 
 

δ = δ + δ + δ2 2 2
m n s t   (10) 

 

The damage variable is defined by equation (11): 
 

δ δ − δ=
δ δ − δ

max 0

max 0
( )

( )

f
m m m

f
m m m

D   (11) 

 

where δmax
m is the maximum displacement attained during the analysis, δ f

m the effective 

displacement at complete separation, and δ0
m the effective displacement at damage 
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initiation (see also Figure 16 , where 0
mt the effective maximum traction). Definition of the 

constitutive thickness of the fracture layer ensures that the nominal strain is equal to the 

separation (ABAQUS (2007)). 
 

 

Figure 16. Constitutive response of cohesive elements; (a) linear softening; (b) exponential softening 

5.3 Boundary conditions, interactions and load 

Appropriate boundary conditions are specified at both symmetry planes (1st symmetry 

plane i.e. XSYMM (U1=U2=R3=0), 2nd symmetry plane YSYMM (U1=U3=R2=0)). A master-

slave constraint equation at the location of the pinned support ensures displacements in 

both the first and second direction, and rotations along the third axis are governed by the 

master mode, simulating a line support. Load is applied by a prescribed displacement in 

de second direction at the pinned support. To model the stiff steel side members, the 

displacements and rotations of all fastener edges are coupled using a multipoint constraint 

(fully clamped). The model is supported at the top-side over-length of the fasteners over a 

length of 15 mm. As a result of the dowel over-length, a horizontal gap of 2 mm in the 

third direction between the load and the timber block is left clear, in accordance with the 

experimental set-up. The interactions between fasteners and timber are modelled using 

contact elements. 

5.4 Solution procedure 

Since the definition of the cohesive elements is based on a progressive degraded stiffness 

method, severe convergence problems will often occur using implicit solvers such as 

ABAQUS/Standard. ABAQUS (2007) suggests using viscous regularization of the 

constitutive equations, resulting the tangent stiffness matrix of the softening material to be 
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positive for sufficiently small time increments. The traction-separation law can be 

regularized using viscosity permitting stresses to be outside the limits set by the  

tractionseparation law. The regularization process involves using a viscous stiffness 

degradation variable vD , defined by the evolution equation
∂ = −
∂ μ

1
( )v v

v
D D D

t
. The 

viscosity parameter μv represents the relaxation time of the viscous system and D is the 

degradation variable evaluated in the inviscid backbone model (ABAQUS (2007)). This 

procedure is schematically represented by Figure 17. The viscosity parameter μv should be 

taken typically small in order to approximate the actual behaviour sufficiently accurate; 

small compared to the characteristic time increment. Viscous regularization usually helps 

improve the rate of convergence of the model in the softening regime, without 

compromising results. 
 

 

Figure 17. Schematic representation of viscous regularization 

 

Adopting this concept requires that the approximate amount of energy associated with 

viscous regularization remains small compared to the total internal energy of the system 

(calculated by ABAQUS), typically in the order of 1%. If the viscous energy becomes larger, 

the entire simulation is likely to run on viscosity and does not represent the actual 

structural behaviour any more. The cohesive elements are removed from the analyses 

when  degraded completely. During the analyses, the amount of viscous energy 

dissipation was monitored carefully (Schoenmakers (2010)). Mostly, the viscosity 

parameter μv = 0.001 is taken although sometimes it is decreased even more. 

−0(1 )vK Dμv
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5.5 Validation of FE-model and results 

Validation of the FE-model is performed in terms of load-slip response and ultimate load. 

Figure 18 shows the damage evolution of the fracture layer at the onset of cracking 

(damage initiation, Figure 18a), and during crack propagation (Figure 18b). Non-damaged 

elements still behave elastically, and failing elements are in the softening regime of the 

constitutive response (Figure 18a). 

 

 

Figure 18. Damage evolution; (a) onset of cracking; (b) crack propagation 

(colour figure at www.heronjournal.nl) 
 

The numerical load-slip response is nearly linear-elastic up to failure where a slight bent-

off is observed prior to attaining the ultimate load. The numerical model tends to be too 

stiff (approximately 20%) compared to the experimental load-slip curve. Table 1 presents 

the  numerical ultimate load obtained for several relative heights. The parameter cGG is  

calculated and listed. Both simulations with the connection at α = 0.44 and α = 0.47 

correspond to the experimental investigations described in (Schoenmakers (2010)) 

with ultF = 19.3 kN ( cGG = 12.7 N/mm1.5) and ultF = 22.8 kN ( cGG = 14.0 N/mm1.5), 

respectively. 
 

No substantial differences in ultimate load of both connections are observed. Additionally, 

it is concluded that the parameter cGG remains approximately constant, for all α except  

α = 0.8. In general good agreement between experiments and numerical simulations is 
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achieved, except for α = 0.8 for which the numerical ultimate load substantially over- 

estimates the expected load (equation (5)). In this case (large loaded edge distance relative  

to the total beam depth) the connection is situated far into the bending-compressive zone 

what may result in reinforcing effects preventing crack propagation, and resulting crack 

closure. Details are included in Schoenmakers (2010). 

6 Summary and conclusions 

Both numerical and analytical techniques have been adopted to model fracture in case of a 

single connection located at mid span of a simply supported beam. Numerical analyses 

have been performed using a progressive damage approach (cohesive elements) and a 

discrete crack approach. The results of the numerical simulations and analytical model are 

in good agreement with the results of an experimental program. 

 

A finite element (FE) discrete crack approach appears to be an appropriate tool for 

studying the stress state around the crack at crack propagation, form which the ultimate 

load can be predicted. An FE damage mechanical approach (in 3D) shows that basic 

assumptions made in 2D (plane section) are appropriate in terms of fastener deformation 

and energy released during crack extension. 

 

The splitting capacity is independent on the fastener configuration, the fastener type (nails 

or dowels) and diameter enabling a simplified analytical approach. The analytical models 

are based on the compliance method (LEFM), accounting for the timber thickness and 

connection location with respect to the beam depth. A calibration procedure is performed 

with regard to the apparent fracture parameter cGG , using an extensive experimental 

data base taken from literature and extended with experiments performed at Eindhoven  

 
Table 1: Numerical results obtained from cohesive element approach 

 α 0.44 0.47 0.50 0.60 0.70 0.80 

n = 3 × 4 ultF [kN] 21.1 N/A 21.8 25.8 34.7 89.1 

 
cGG  [ N/mm1.5] 13.9 N/A 12.7 12.2 13.2 25.8 

n = 5 × 5 ultF [kN] N/A 21.5 22.8 26.3 33.9 84.2 

 
cGG  [ N/mm1.5] N/A 13.2 13.2 12.5 12.9 24.4 
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University of Technology. Prior to calibration, it is verified that the experiments taken into 

consideration failed by splitting. The splitting capacity in terms of cGG of glulam timber 

beams is significantly higher than that of sawn timber beams. The critical energy release 

rate associated with fracture induced by dowel-type fastener connections is close to mode I 

values, as shown by numerical simulations. 
 

The analytical model presented may be included in upcoming design standards due its 

ability to accurately predict the splitting capacity perpendicular-to-grain of timber beams 

when loaded by mechanical connections. 
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