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In the coming years numerous existing traffic bridges in cities are subject to re-evaluation. In 

this paper a new probabilistic traffic load model for short-span bridges is proposed. As an 

example, site-specific weigh-in-motion data from Rotterdam, the Netherlands, is included in 

the model. The method proposed in this paper allows for a very efficient computation and at 

the same time takes into account the stochastics in axle loads and distances. For a simply 

supported 6 m single lane bridge the probabilistic load model provides a design load effect 

that  is slightly lower than currently prescribed EN 1991-2 and the Dutch Guidelines for 

existing structures NEN 8700 and NEN 8701. This indicates that there is possible potential for 

a small reduction of the traffic load for short-span city bridges compared to the current 

standards.  However, given the questionable quality of recorded measurements, a more 

extensive measurement campaign using WIM measurements is needed to get an adequate 

quantification of the traffic load parameters for city traffic conditions. 
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1 Introduction 

Several countries face the problem of aging infrastructure assets. Due to increasing weight 

of commercial vehicles and density of traffic in the last decades, the reliability level of 

bridges and viaducts may drop below the required target. This holds especially for 

municipalities where the load used in the design of the bridges may have been based on a 

lower  load class than for bridges in the highway network. Since most bridges in urban 

areas are rather small, the focus in this paper is on short span bridges. Traffic load models, 

used for both design and re-evaluation of bridges according to European standards, are 



 148 

based on measurements on highways in the 1980’s [Sedlacek et al., 2008] and in the case of 

for example The Netherlands also calibrated to recent measurements on Dutch 

highways.[Steenbergen, Morales-Nápoles, & Vrouwenvelder, 2012]. The question arises 

whether these load models are representative for inner city areas. Traffic load data 

obtained by weigh-in-motion (WIM) measurements has been a typical and accepted 

method of assessing traffic loading in the past decades, however a correct calibration of the 

measurement system is required. 

In this paper we focus on load effects in the ultimate limit state (ULS). In this case, the load 

parameter of interest for evaluation of the structural reliability is the maximum load effect 

for a certain reference period. We will therefore search for the statistical distribution of this 

load effect, which can be either directly included in a full probabilistic analysis, or can 

serve as input for determining a design load in a semi-probabilistic calculation.  

Traffic load models based on WIM data have been developed and used in the past, for 

example by Enright [2010], Steenbergen, Morales-Nápoles, & Vrouwenvelder [2012] and 

Kozikowski [2009].  A both practical and sufficiently accurate method to interpret WIM 

data for short-span bridges is currently not available.  

 

In a “traditional” approach load effects, such as bending moment or shear force, are 

directly calculated based on the measured traffic data, for example by evaluating the load 

effects under the measured “stream” of traffic (using the axle loads, axle distances, vehicle 

distances as registered). Hereafter, block maxima values of the resulting load effects are 

gathered. As measurement campaigns are limited to a few months or maximum one year, 

this set of values usually consists of daily or weekly maxima, based on which a statistical 

distribution for the daily (or weekly) maximum can be determined. To calculate 

characteristic values of the load effect for the reference period of several years, one must 

extrapolate from these daily or weekly extreme value distributions. This extrapolation 

requires assumptions and although the extreme load effect can be determined, the loading 

scenario (i.e. the parameters of the “extreme” vehicle or vehicles and their location on the 

bridge) expected to cause this most extreme load effects cannot be identified.   

A second approach, adapted by Enright & O’Brien [2013], [ O’Brien et al., 2012] is a long-

run traffic simulation model, which eliminates the need of extrapolation. The simulation is 

carried out based on probability distributions fitted to relevant parameters of WIM data, 

such as axle distances, axle weights, vehicle distances. There are several methods proposed 

for the statistical description of the vehicle parameters. An overview of related literature is 

given for example by Enright & O’Brien [2013]. Correlations between relevant parameters 
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of a vehicle are modelled as well. Traffic is then generated using Monte Carlo simulation 

for several thousands of years. Based on the simulated traffic flow, load effects are 

calculated and, as the simulation is long-run, a set of values of the maximum load effect for 

a reference period (e.g. 50 years) can be determined. This can be used for calibrating design 

loads or as a direct input to a full probabilistic analysis. In the above mentioned research, 

1000 years of traffic has been simulated.  

 

The second approach of traffic loading analysis described above [Enright & O’Brien, 2013] 

has the advantage that the typical loading scenarios causing the extreme load effect(s) can 

be identified. However, a major disadvantage of this approach, when considering 

application for a site-specific load model on short-span city bridges, is the complex 

correlation structure which has to be set up in order to simulate traffic. Furthermore, the 

procedure necessary to set up this load model is very time-consuming. Besides, detailed 

modelling of vehicle distances and traffic flows is not expected to significantly increase the 

accuracy of load effect calculation on short-span inner-city bridges. It is therefore 

interesting to search for a more practical and fast way to describe local traffic loading 

conditions using WIM data. 

 

According to the code for existing structures in The Netherlands, NEN 8700, a minimum 

reference period of 15 years should be used. The background is described in [Steenbergen 

& Vrouwenvelder, 2010]. The remaining service life is chosen by the owner, the 

municipality, in this case for existing bridges this is also 15 years.  For inner city bridges of 

EN 1990 Consequence Class 2, the required reliability for the life time in NEN 8700 is β = 

2.5; this corresponds to a maximum allowed failure probability of 6 10-3 in the remaining 

life time. The use of this β = 2.5 is still under discussion, but here it is chosen as a typical 

example.  These values, compared for example to a new design by Eurocode (50 or 100 

years reference period with larger reliability indices), are advantageous when looking for 

the design values of a load, as the corresponding maximum exceedance probabilities are 

relatively low. There is therefore potential for applying a traffic simulation model. 

In this paper we propose a novel traffic load model for short-span city bridges . This 

approach, similarly to that of Enright & O’Brien [2013], has the advantage that several 

hundred years of traffic can be simulated in a relatively short time, avoiding the need to 

extrapolate daily or weekly maximum distributions.  
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In this paper, we first give an overview of the relevant attributes of traffic for bridge 

loading in the ultimate limit state and present the proposed traffic simulation model in 

Section 2. In Section 3 we elaborate on the traffic simulation and the process of determining 

load effects (i.e. bending moment), derived from the previously simulated traffic. Herein, a 

load-effect maxima distribution is determined for the reference period. In Section 4, load 

effects based on the standard Eurocode load model (LM 1) are compared to those 

determined from the probabilistic traffic load model. A summary and conclusions are 

provided in Section 5. The traffic load model is illustrated on calculations for a 6 m span 

beam.  

2 Traffic load model 

2.1 Weigh-in-motion data 

The WIM database used in this research was collected in the city of Rotterdam. Expecting 

that traffic loads in the city are lower than on highways, the Municipality of Rotterdam 

initiated a measurement campaign to determine traffic loading on its local bridges. In 

typical WIM systems today piezo-electric sensors are applied, which are based on the 

principle of converting stress or strain to proportionate electrical energy. In this 

measurement campaign a WIM HESTIA measurement system was used, which is capable 

of determining speed, vehicle length, inter-axle distance, axle weight and gross vehicle 

weight (GVW). For each passing axle two measurements are registered.  

Two relatively heavily loaded (maximum allowed GVW: 80 tons) locations within the city 

(local road) were chosen, where WIM systems were installed in 2013. The first location was 

on a descending road directly before traffic lights; the decelerating vehicles distorted the 

measurements greatly because of the sensitivity of the measurement system for horizontal 

forces. The second location also suffered from accelerating and braking vehicles. For this 

reason data from only the second locations was taken into account; also there the 

calibration of the WIM measurements was questionable but the values were considered to 

be conservative. The campaign resulted in a database of heavy vehicles corresponding to 

two months of traffic. A heavy vehicle is defined as a vehicle with a GVW of 3.5 tons or 

higher. Vehicles with a lower weight are expected not to significantly contribute to the 

extreme loading situations on the bridge, therefore they are not considered in the data 

analysis. After pre-processing measurement data, information of 48 586 heavy vehicles, 

corresponding to two months of measurements, was used.  
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The same number of vehicles per unit time is used for the traffic load model developed in 

this paper, corresponding to about 300 000 heavy (> 3.5 tons) vehicles per year. 

Figure 1 and 2 give the distribution functions of axle and vehicle weight. In these Figures 

also the values from the Dutch highway RW16-L from April 2008 are plotted since these 

were used for the calibration of the National Annex of EN-1991-1-4. However this 

calibration was not done for short spans and only for spans of 20 m, 50 m, 100 m and 200 

m. 

2.2 Approach for traffic load modelling 

The first of two main aspects within the traffic load modelling is to describe a sequence of 

heavy vehicles, each characterised by axle loads and axle distances. The second is to 

determine life-time maxima load effects caused by the sequence of the previously 

simulated vehicles on a given structure. In the following, we describe this method briefly, 

while in Section 1 the various steps of the process are discussed in detail. 

We restrict ourselves to a one-lane bridge or a main girder of a bridge affected by traffic 

load in one direction.  The most relevant principle behind the proposed model is that the 

governing load effect on a short-span bridge will result from one single heavy-weight  

 

   Figure 1. Axle load distributions in Rotterdam and RW16-L 



 152 

 

   Figure 2. Vehicle load distributions in Rotterdam and RW16-L 

 

vehicle on the bridge since the bridge (order of magnitude 6-10 m) is small with respect to 

one truck. As a result, the “sequence” (i.e. order) of vehicles, as well as the inter-vehicle 

distance can be neglected and the modelling consists of individual heavy vehicles that may 

pass over the bridge in the reference period.  

The basis of the traffic simulation is the data obtained from WIM measurements. With help 

of this data, relevant truck properties can be described by random variables. Similarly to 

other traffic load models, such as that of Caprani [2005], the main strategy is to use vehicle 

categories, which we define here by the number of axles. Data analysis and simulation will 

be carried out within these vehicle categories. We assume that the ratio of various vehicle 

categories in the traffic stays constant in the reference period.  

In the proposed method,  vehicles with a GWV possibly higher than the recorded values (2 

months) will be simulated, while it is assumed that (significantly) different axle 

configurations than registered in the measurement period will not appear. The 4-step 

process is described in the following. 

 

1. The GVW within each category is described using a Gaussian mixture 

distribution, fitted to the measured data.  Within each vehicle category (based on 
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number of axles), vehicle weights are simulated based on the distribution fitted 

to the measured GVW datasets. 

2. We define the vehicle property (1), which represents the ordered distance of axles 

and the ratio of the gross vehicle weight carried on each axle. 
 

          −=, 1 2 1 1 2[ , ,... , , ,... ]n i n nR d d d a a a ,  (1) 

where n is the vehicle category; i is the index of the registered WIM 

measurement; jd is the axle distance between axles j and j+1 and ja is the relative 

load on axle j.  The relative load is defined as that fraction of the total weight that 

is carried by the axle under consideration. Vehicle properties can directly be 

determined from WIM measurements. Vehicle properties are sampled randomly 

from the empirical data and “coupled” to the simulated vehicle weights. This 

process is carried out separately for vehicle categories.  
 

3. After having obtained a set of vehicles within each vehicle category, we 

determine and analyse the maximum load effects. In case of using a linear model 

to describe the relation between load and load effect, we can simplify the process 

of determining a large number of load effects by calculating the maximum load 

effect in an arbitrary cross section of a bridge for each vehicle property. The load 

effect caused by a simulated vehicle can then be obtained as described in (2). 
 

         =,
,

sim
sim Ri Ri

unit Ri

GVW
LE LE

GVW
 (2) 

Here ,sim RiLE is the load effect from a simulated truck; RiLE is the load effect 

from a unit-weight truck with the vehicle property Ri; simGVW is the simulated 

GVW and ,unit RiGVW is the unit GVW. 

The principle behind the load-effect simulation is that it is sufficient to know only 

the GVW and property index of each simulated vehicle and the load effect caused 

by unit weight trucks of all possible vehicle properties. Instead of calculating a 

load effect caused by each passing vehicle, significant reduction in the necessary 

computation time is reached by doing this only for the measured vehicle 

properties and then ‘scaling’ the result with the vehicle weight. 
 

4. Finally, to determine the reliability of a structure for the (remaining) service life, 

the extreme (maximum) value of the load effect within the reference period 
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should be known. This value is a stochastic quantity itself. With the help of long-

run simulations, multiple extreme values for a reference period can be found. 

Based on these results, the load effect maximum can be approximated by a 

statistical (extreme value type) distribution.  

 

The resulting extreme value distribution of the life-time maxima load effect  can be used to 

determine design values of the load or to carry out a level II or III reliability analysis on the 

cross section. 

3 Traffic- and load effect simulation 

3.1 Simulating vehicle weights 

As basis for the Monte Carlo simulation is it chosen to group vehicles with identical 

number of axles in one category, defined in 2.2. Per category an analytical distribution 

function is fitted to the empirical distribution function of the GVW and from that analytical 

distribution function the GVW is sampled in the Monte Carlo simulation. In the past, 

statistical distributions of measured GVW-s have been described by bi- or tri-modal 

normal distributions, for example when calibrating the Eurocodes [Sedlacek et al., 2008].  

To each category of GVW data multi-modal normal distributions are fitted using the built-

in function of MatLab® ‘fitgmdist’, the number of components varying between four and 

ten. 

Vehicles with a number of axles above 8 were not included in the model, because only a 

few of these were recorded, therefore a distribution fit to the GVW-s in these categories 

could not be done. We investigate whether this may introduce a significant error in the 

extreme load effect prediction. The heaviest vehicles measured were not the ones with the 

highest axle number (9, 11 axles). This influence is depicted in Figure 3, where exceedance 

probability diagrams are plotted for the GVW of all vehicles, based on Gaussian mixture 

distribution fits. The continuous line is based on measurements of up to 8 axles, while the 

dashed line corresponds to the total measured population, thus including a few 9 and 11-

axle vehicles as well. It can be seen that the influence of these measurements is negligibly 

small. 

3.2 Determining axle loads 

Besides the GVW, the axle loads and position of axles have a significant influence on 

extreme load effects especially for short bridges. For the load effect, here we choose the 
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Figure 3. Exceedance probability of GVW based on statistical distribution of all measurements 

 

bending moment in the middle of a simply supported short span beam.   

It is assumed that the ratio of vehicles with a certain number of axles is and will remain 

constant for the reference period. Furthermore, it is assumed that the recorded vehicle 

types give a good description of the expected traffic in the reference period with respect to 

axle distances and weight distribution among the axles. 

It is assumed that the WIM measurements record all vehicle properties that will appear in 

the reference period of the load with a sufficient precision, i.e. no vehicles with 

significantly different axle composition or distribution of total weight over the axles will 

occur. It should be taken into account that the closer two axles are, the larger the 

correlation is between the magnitude of the load on these axles [Enright, 2010]. By 

adopting vehicle properties, this aspect is accounted for, in a simplified way. 

The output of a typical traffic simulation model, which will serve for determining load 

effects on a bridge, is a set of heavy vehicles described by axle loads and distances. As 

described in the introduction section, it can be reasonably assumed that on a short bridge 

(with a span of up to 20 m) of one traffic lane, the inter-vehicle distance will not play a 

significant role in the loading for the ultimate limit state. The output of the traffic 

simulation proposed for short bridges is therefore a “matrix” of heavy vehicles, described 
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by their axle loads. To determine the load effects caused by the vehicles, it is sufficient to 

consider only the vehicle weight and “property index” of each simulated vehicle. The 

relevance of this step is saving computational capacity. The method proposed in this paper 

allows for efficient computation and at the same time takes into account the variability in 

axle loads and distances. 

The main idea behind the simulation model is to couple vehicle properties simulated based 

on the above mentioned empirical sample space with the GVW-s simulated from the fitted 

statistical distributions, within each vehicle category. However, the weight distribution 

amongst the axles is not fully independent of the total weight of the vehicle. An example of 

this dependence can be seen in Figure 4, within the Vehicle Category 5, where the largest 

relative axle load is plotted against the GVW for each recorded vehicle. A negative 

correlation structure can be recognised when visualizing a bi-variate tri-modal Gaussian 

mixture distribution fit to the data, such as in Figure 4. In practice, this means that the 

higher the GVW, the lower the fraction of the load on the  heaviest loaded axle of the 

vehicle will be. This can be explained by a more even load distribution amongst axles of 
 

 

Figure 4. Scatter plot of measured GVW against highest relative axle load per vehicle, with contour 

of fitted tri-modal Gaussian mixture. All recorded 5-axle vehicles 
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fully loaded trucks. The proposed model will account for this dependence, as described 

below. 

In the traffic simulation, first, vehicle weights have been simulated based on the previously 

defined Gaussian mixture distributions fitted to the GVW datasets, using the Monte Carlo 

method. 

When coupling the simulated vehicle weight with a randomly simulated vehicle property, 

the relation of the maximum relative axle weight to the magnitude of the GVW should be 

taken into account, for the reasons explained above.  

The following approach is proposed: vehicle properties are divided to sub-categories 

within each vehicle category, based on the GVW they had appeared with in the 

measurements. These sub-categories will ensure that for example a simulated GVW of 40 

tons does not get “coupled” with a vehicle property that was determined from a vehicle of 

5 tons. Thresholds of 100 kN (GVW) are chosen for the sub-categories. An example is 

visualised in Figure 5: within Vehicle Category 5 a GVW of 345 kN is simulated. The 

second parameter describing this vehicle, the vehicle property, is then simulated from a 

sub-category of properties. A subcategory can be the interval where the GVW originally 

belongs to, in this case the interval [300;400[. The other option, allowing for example for a 

simulated GVW of 301 kN to be coupled with a vehicle property that was measured on a 

vehicle  of 299 kN, is to sample for a given GVW from the “neighbouring” sub-categories 

as well. In the case of the GVW of 345 kN this would mean the intervals [200;400[ or 

[200;500[. The disadvantage of this approach is that due to the different number of 

measurements in each block, the ratio of various vehicle properties will be distorted in the 

simulated traffic. 

In order to check the influence of the procedure described above, as an example, in Figure 

6 the simulated axle loads for Vehicle Category 5 (5 axle vehicle) are compared to the 

measurements. This vehicle is the most frequent vehicle in the database. In the figure the 

exceedance probability of the axle loads is plotted. It can be seen that in the tail of the 

distribution the simulated axle loads overestimate the measurements, indicating a slightly 

conservative estimate using simulations. It is noted that the simulation does not directly 

give the value of axle loads, this is calculated simply by multiplying the simulated GVW 

with the relative axle load fractions belonging to the coupled vehicle property. 

3.3 Load effects from simulated traffic 

The approach proposed in this paper allows for an easy simulation of several hundred 

years of traffic. As the life-time maximum of the load effect is a stochastic quantity in itself,  
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Figure 5. Sub-division of vehicle properties to sub-categories by highest relative axle load. 5-axle 

vehicles 

 

we carry out the simulation for the reference period multiple times. Then, using block-

maxima method, 15-year extreme values can be found. 

As described in 2.2, we determine load effects caused by the simulated traffic by taking the 

load effect resulting from a unit-weight vehicle with same vehicle property as that of the 

simulated truck, and multiplying it with the (simulated) GVW. The main advantage of this 

approach is the reduction of computation time, allowing for simulation of several hundred 

years of traffic. Using each vehicle property that has appeared in the measurements, a load 

effect calculation for 48586 cases is needed. If all passing vehicles were to be calculated 

separately, for only one single simulation of the 15-year reference period the load-effect 

calculations would be 4.37 million. To obtain 500 15-year maxima values, 2.18 billion 

evaluations on the load effect would be required. Herein, the maximum bending moment 

in the mid-span is determined, nevertheless the algorithm could be adjusted for maximum 

load effect on the whole beam or for another load effect such as shear. 
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Figure 6: Comparison of measurements and simulated axle loads, category 5 

3.4 Statistical distribution of extreme load effects 

The final step of the traffic load modelling is analysis of the simulated load effects. In 

Figure 7 a histogram of 500 values of 15-year maximum bending moment can be seen, 

determined at mid-span of a 6 m span simply supported beam. 

A statistical distribution is fitted to the set of extreme values which were derived from the 

simulations. The chosen distribution should model the tail data accurately, as structural 

failure is expected to occur due to the most extreme loads. The type of the distribution as 

well as the parameters should be estimated. The type is likely to be an extreme value 

distribution. Both a generalized extreme value distribution and a specific type of it, a 

Gumbel distribution is fitted to the results as well as Gaussian mixture distributions of 10 

and 20 components.  

In Figure 8 the exceedance-probability of the fitted distributions is plotted together with 

the exceedance frequency plot of the set of 15-year maxima load effect values. The Gumbel 

distribution appears to be an adequate fit, and is preferred because to many components in  

measurement

simulation
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Figure 7. Histogram of 15-year maxima bending moment [kNm]; 6m span simply supported beam  

 

a Gaussian mixture make no physical sense. However we point out that the range of the 

design value of the maximum load effect is expected in a Level I probabilistic calculation at 

an exceedance probability of Φ(2.5 x -0.7) = 0.04, therefore determining a highly accurate fit 

in a range corresponding to significantly lower exceedance probabilities is not necessary. 

Similarly as when fitting distributions to the GVW data points gained from the WIM 

measurements, parameters of the distribution are determined using a maximum likelihood 

algorithm. A Gumbel distribution is described by two parameters, in this case a mean 

value of 581 kNm and standard deviation of 27.6 kNm result. 

The parameters of the fitted (Gumbel) distribution are statistical variables themselves, see 

e.g. [Kottegoda & Rosso, 2008]. One strategy to quantify their uncertainty is to assign a 

standard error (i.e. standard deviation of the parameter) to each. These standard deviations 

correspond to confidence intervals, a range in which the parameter of our estimated 

distribution falls with a given probability, and therefore give an indication of the reliability 

of the fit, assuming that the chosen distribution is correct. For the Gumbel distribution, the 

standard error of the mean is 1, while for the standard deviation 0.7. These correspond to 

coefficients of variation of 0.002 and 0.02, relatively low values. For a more accurate 

procedure, confidence bounds should be observed in all steps and uncertainties should be 

propagated through the model. 
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Figure 8: Exceedance-probability plot of various distribution types fitted to 15-year bending 

moment maxima values (6 m span simply supported beam)  

4 Comparison to load effects from Eurocode and Dutch national guidelines 

To give an indication of the possible benefit of the probabilistic model with local data, we 

compare the resulting load effects (in this case bending moment) to those  calculated using 

the standard Eurocode load models, the Dutch National Annex and the Dutch Guidelines 

for existing structures [NEN-EN 1991-2; NEN 8700; NEN 8701]. For global analysis, the 

load model LM 1 of EN 1991-2 is considered.   

For the comparison a 6 m span bridge is chosen, with one traffic lane, modelled as a simply 

supported beam. The width of the traffic lane is 3 m. The bending moments at the middle 

cross section will be compared, both originated from the Eurocode and from the 

probabilistic traffic load model. 

4.1 Some specifics of the  Dutch building code for existing structures 

In the Netherlands, as an extension to the rules of the Eurocodes, further regulations apply 

to existing structures. These are laid down in the codes NEN 8700 (Basis of designs) and 

NEN 8701 (Actions) and contain safety levels for existing structures, based on an economic 

optimum as well as a basic requirement for human safety. The background of the 
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adjustment  is described by Steenbergen and Vrouwenvelder [2010]. In these codes, 

accepted probabilities of failure are defined for structures of the three consequence classes 

that are indicated in Eurocode EN 1990, for two different situations, ‘disapproval’ and 

‘repair’. For engineering practice, the reliability levels are translated into a partial safety 

factor format. 

A typical short-span city bridge outside of the main highway network belongs to 

Consequence Class 2. For this case, the above mentioned Dutch regulations allow, for 

‘disapproval’, for a reliability index of β = 2.5 for a reference period of 15 years. In Table 1 

the corresponding partial factors and reliability indices are given. The safety format 6.10 

a/b of EN 1990 is applied here. 

 

Table 1. Required reliability and partial factors for existing structures at “rejection” level, 

             according to NEN 8700 

Load combination/ 
consequence class (CC)

Required 
reliability 

Permanent loads Traffic load 

 
Favourable Unfavourable 

 

β γgj,sup γgj,inf γT 

Case 6.10a 
CC 1 1.8 1.0 0.9 1.0 

CC 2 2.5 1.1 0.9 1.1 

CC 3 3.3 1.25 0.9 1.25 

Case 6.10b 
CC 1 1.8 1.0 0.9 1.0 

CC 2 2.5 1.1 0.9 1.1 

CC 3 3.3 1.15 0.9 1.25 
 

Specifications in the Netherlands (National annex to EN-1991-2 and NEN 8701) allow for 

taking into account a shorter reference period as well as the lower influence of traffic 

trends for a shorter remaining working life. The first load-reduction factor, Ψt, accounts for 

the fact that the actual reference period t is not equivalent to the standard reference period 

for new structures (100 years for the case of bridges). In NEN-8701 a recommendation for 

these values is given, for 15 years reference period on a short-span bridge this is Ψt = 0.98. 

The second factor takes into consideration that load models were calibrated considering an 

increasing rate of heavy traffic in time, up to 2060. This means that when the remaining 

service life ends earlier than 2060, a reduction is allowed for compared to the calibrated 

load value. The multiplier accounting for this trend effect αtrend , depends on the influence 
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length and on the year when the remaining working life ends, ranging from 0.9 (2015) to 

1.0 (2060) for bridges of 20 m influence length and from 0.775 (2015) to 1.0 for 200 m 

influence length. Finally, a reduction is allowed for a lower number of vehicles per year 

(300 000), in this case ψ = 0.98. 

In order to compare  the results of the proposed probabilistic traffic load model  to the load 

effects which would be used in practice for this case, we adapt the above mentioned 

reduction factors as multipliers of LM1 from EN-1991-2. The following section will give 

information on their values, considering the specifics of the case. 

4.2 Design load based on Eurocode load model with national guidelines 

To make a realistic comparison, one should consider the load that would be used in 

practice to check an existing structure. Therefore the Load Model 1 of Eurocode will be 

multiplied by the reduction factors described in 4.1. The resulting design load is given in 

Table 2.  Since in the proposed probabilistic load model no ‘trend’ is considered, to make a 

realistic comparison, we will also reduce the LM1 load according to NEN 8701 so that there 

is no trend accounted for. The bending moment at mid span from the LM1  load model, 

including the reduction factors can now be calculated, the results are summarized Table 3. 

In case we consider a traffic lane loaded on 3.6 m width, as for example in [Steenbergen et 

al., 2012], the total bending moment including factors increases slightly, to 867 kNm. The 

difference between the two cases is marginal, for the comparison we will use the more 

narrow lane. 

 

 

Table 2. Reduction factors for EN-NEN load model 

Length [m] 6 

Design life [years] 100 

Reference period [years] 15 

heavy traffic / 2 months 4.86E+04 

heavy traffic / year   2.92E+05 

Factors

Factor for lower number of trucks ψ 0.98 

Factor to account for no trend αtrend 0.967 

Shorter time (NEN 8701) Ψt 0.98 

Total reduction factor 0.929 
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Table 3. Design bending moment at mid-span, neglecting effect of trend [kNm] 

Moment from loads [kNm]  

Tandem loads - Characteristic  720 

Distributed load (3m width) - Characteristic  121.5 

Total characteristic  841.5 

Partial factor for traffic load (NEN8701) [-] 1.10 

Reduction factors [-] 0.929 

Moment including factors [kNm] 860 

4.3 Design load based on probabilistic traffic load model 

To obtain the design load effect from the proposed probabilistic traffic load model, 

additional stochastic parameters should be considered. These are described in the 

following paragraphs and it is shown how to include these variables when determining the 

design load. 

The dynamic response of the structure amplifies the effect of vehicle loading. A commonly 

used, simplified model to account for this behaviour is the dynamic amplification factor 

(DAF), a multiplier of the static load.  The load effect values resulting from the traffic 

simulation model do not account for this effect, which therefore has to be included in the 

further steps. The dynamic amplification is considered to be a stochastic parameter. 

Multiple studies address the topic of the DAF [Caprani, González, Paraic, & O’Brien, 2011; 

Gonzalez et al., 2009; Steenbergen et al., 2012]. In this paper, we adapt the results of the 

literature study carried out for a research project of TNO, commissioned by the Dutch 

Ministry of Infrastructure [Steenbergen et al., 2012]. We consider a normally distributed 

DAF with a mean value of 1.1 and a variation coefficient of 0.1.  

The model uncertainty for the load effect, θM, takes into account the difference between the 

model and reality when converting a load to load effect. The recommended value from 

[Vrouwenvelder, Marková, & Holický, 2001] is a normal distribution N(1.0, 0.1). A small 

statistical uncertainty θStat is accounted for, since the design value of the traffic load (see 

Table 5) is still within the empirical distribution function of the simulated 15-year maxima. 

The values of the variables are given in Table 4. 

The design value of the total extreme load must be determined including these variables. 

For this, a semi-probabilistic approach is adopted, assuming the standard importance 

factor α = 0.7 for the load. The acceptable maximum exceedance probability of the load is 

described by (3). For the required reliability β = 2.5, the corresponding exceedance 

probability is dP = 0.04. 
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= φ −αβ( )dP   (3) 

The value of the traffic load corresponding to dP is determined with the help of Prob2B® 

reliability software. First, the limit state equation (4) is defined. When the design load dS is 

exceeded, the limit state equation assumes a negative value. Therefore, in the second step 

we search for the value of dS which results in a failure probability equal to the allowed 

exceedance probability dP . 
 

= − θ θT Stat MdZ S S DAF   (4) 

The resulting design load is dS = 818 kNm. This is marginally, 5% lower than the load 

allowed for according to the standards (see Table 3) , SNEN-EN =  860 kNm. The design 

values of the random variables are summarized in Table 5. 
 

Table 4. Model factor for probabilistic load model 

Variable Sign Distribution Mean Stand. Dev. 

Dynamic amplification DAF Normal 1.1 0.10 

Statistical uncertainty θT  Normal 1.0 0.05 

Model uncertainty - load effect θM  Normal 1.0 0.10 
 

Table 5. Design value of random variables resulting from probabilistic calculation 

Variable Sign Design value 

Dynamic amplification DAF 1.2 

Statistical uncertainty θT  1.03 

Model uncertainty - load effect θM  1.11 

Traffic loading TS  595.90 

Design traffic load dS  818.00 

5 Summary and conclusions 

In this paper, a probabilistic traffic load model for short-span bridges has been presented 

and demonstrated for a case of a 6 meter span bridge. We proposed a method that uses 

local WIM data and is capable of simulating several thousands of years of traffic as well as 

the resulting load effects. Measurement data was analysed and categorized by number of 

axles. Gross vehicle weights were described by statistical distributions (Gaussian mixture). 

As a basis of the proposed method, we have defined the vehicle property and described 

traffic by coupling this attribute to simulated vehicle weights. The proposed model 
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accounts for a practical relationship between the weight of a vehicle and the distribution of 

total weight among the axles. By assigning a load-effect multiplier to each vehicle 

property, a series of load effects caused by the simulated traffic could directly be obtained 

from the model. The maximum load effect values for the reference period of interest, for 

example 15 years according to the Dutch regulations for existing structures, were collected 

from the results, and the statistical distribution of this maximum load effect was estimated.  

Calculations were carried out for a 6 m span bridge. The design value of the load effect was 

determined, considering dynamic amplification and model uncertainties. The acceptable 

exceedance probability of the load corresponds to the reliability index β = 2.5, based on 

national standards for existing structures in the Netherlands. The obtained design value 

was compared to the design value according to the Eurocode supplemented by regulations 

for the Netherlands (Dutch National Annex and NEN 8700 and NEN 8701 codes for 

existing structures). Having considered the reduction factors allowed for in the above 

mentioned norms, the probabilistic load model using WIM data from a recent 

measurement campaign gave a design load effect that is marginally (5%) lower than 

prescribed by the current standards. 

Two domains for future research are on the one hand studying validity of the assumptions, 

on the other hand extending the model. The main assumptions to verify and possibly 

further develop the model based on these, are: (a) validity of the sub-categorization within 

vehicle categories for GVW-sampling; (b) further study inclusion of vehicles with over 8 

axles; (c) investigate whether truck configurations are an adequate representation of a 

population within a vehicle category. Valuable extension to the traffic load model could be: 

(d) consider lateral load distribution in an upgraded traffic load effect model; (e) observe 

multiple cross sections of the beam instead of only the middle one; (f) study different 

influence lines, e.g. for the shear force near the supports; (g) investigate the influence of 

weight-limitation and law-enforcement on the maxima load–effect distribution. 

Furthermore, considering multiple spans and possibly locations, more generic conclusions 

could be drawn about the magnitude of traffic loading on short-span city bridges. Finally, 

given the questionable quality of recorded measurements, a deeper investigation into the 

WIM  system adequate for city traffic conditions should be carried out. 
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