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In part I of this paper, dedicated to the subject of shear resistance under sustained loading 

(Sarkhosh 2015), a series of tests on reinforced concrete beams without shear reinforcement 

was described, which were subjected to high sustained shear loads close to the short-term 

failure load. The goal of this research project was to investigate the behaviour of shear-critical 

concrete beams under sustained loading. The beams were subjected to the sustained load for 

periods ranging from three months to three years. Meanwhile, the deflection, crack growth 

and crack widths were measured. In part II of this paper, a numerical model is presented 

based on a modification of the inclined shear crack model of Gastebled & May (2001), in 

which the effect of time-dependent parameters on the shear resistance of the concrete beams 

is introduced. The model considers a bilinear inclined shear crack in the beam web that 

includes the effect of aggregate interlock according to the rough crack model of Walraven 

(1980) on the shear resistance of the beam. The validity of the modified model was verified 

for short term loading against 393 experiments on concrete beams. For long term loading it 

was verified against new tests (Part I of this paper). With this model it can be explained why 

the sustained loading effect in shear is much less significant than in tension and compression. 

1 Introduction 

Three different mechanisms of fractural damage are involved in the shear failure of RC 

members without web reinforcement: a) formation of a diagonal shear crack, mostly 

originating from a flexural crack b) anchorage or bond failure and c) crushing of concrete 

in the compression zone (Fig. 1). With respect to the location of the diagonal crack in the 

web, for the chronological order of these mechanisms in the failure process two 

possibilities exist: 
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Figure 1. Mechanisms of shear fracture; (a) diagonal tension crack, (b) anchorage or bond failure 

and (c) crushing of concrete in the compression zone 

 

I. A diagonal shear crack develops crossing the possible compression strut between 

loading plate and support (Fig. 1, left) 

The first mechanism is always diagonal tension cracking which may be initiated in the web 

when the inclined tensile stress reaches the tensile strength of the concrete. Subsequently, 

the inclined crack extends in both directions or by growth of a flexural crack from the 

bottom of the beam, while propagating close to a 45 degree angle towards the top. In both 

cases, when the shear crack reaches the neutral axis, it cannot propagate any further 

towards the top. At that point, with sufficient stress, fracture occurs along the 

reinforcement at the bottom of the beam towards the anchorage, which may split the beam 

into two pieces. Furthermore, in the absence of compression reinforcement, the concrete in 

the compression zone fails at the top by breaking out of the triangular zone c. 

 

II. A diagonal shear crack is initiated and propagates below the possible compression 

strut between loading plate and support (Fig. 1, right) 

The diagonal shear crack is initiated by a flexural crack from the bottom, while 

propagating under the compression strut towards the top. In this case, the shear crack 

grows to the neutral axis under the loading plate and cannot propagate any further 

towards the top. At that point, the fracture process zone in front of the crack tip is confined 

by compressive stresses in both x and y directions due to flexure and the effect of the 

loading plate. Thus, crushing of the beam as a consequence of the shear crack requires 

extra stresses. In this case, a higher shear resistance of the beam may be found. 

 

As a conclusion, the behaviour of the shear-flexure crack as the most important mechanism 

of failure in slender beams with an a/d ratio (shear slenderness ratio, see also Fig. 2) 
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between 2.5 and 6.0, should be well studied in order to be able to explain and simulate the 

time dependent performance of a shear critical beam. 

2 Research significance 

In this paper, two models, one based on a shear crack with a linear shape and the other 

based on a shear crack with a bilinear shape will be compared with regard to their ability 

to predict the shear resistance both for monotonic short term loading and for sustained 

loading. The linear shape of the shear crack corresponds with the model of Gastebled & 

May (2001) and the bilinear shape of the shear crack is a modification of this model, which 

allows to consider aggregate interlock as a component of the shear resistance of the beam. 

The analytical model of Gastebled & May assumes that the shear resistance is reached 

when the inclined crack starts to propagate, and sufficient energy is released at the level of 

the longitudinal reinforcement. However, this model does not consider the effect of 

aggregate interlock and therefore underestimates the shear resistance of the beam. The 

analytical model proposed in this chapter, which will later be verified with experiments, 

predicts a more accurate shear resistance of reinforced concrete members without stirrups 

by virtue of the use of the aggregate interlock effect. Furthermore, an evaluation is 

presented in which the effect of various parameters under sustained loading is discussed. 

3 Shear resistance according to Gastebled & May, and Xu et al. 

By the time that the crack tip reaches the neutral axis, the fracture mechanism is associated 

with opening of the crack by a rotation around the crack tip. Moreover the formulation of 

the model is based on the fundamental relation of linear elastic fracture mechanics, being  
1
2e extU W= δ , where eU is the potential elastic energy and extWδ is the external work done 

by the applied force. The mechanism producing external work is rotation, under a constant 

load, around the tip of the diagonal crack. In order to calculate the energy release, the 

rotational stiffness of the beam needs to be determined. To that aim, the bulk of uncracked 

concrete and the embedded reinforcement are considered to behave as a rigid body except 

for the concrete connection subjected to compression. The rotational stiffness depends on 

the axial and the dowel stiffness of the longitudinal reinforcement, itself depending on the 

extent of splitting releasing the reinforcing bar (Reineck, 1991; Gastebled & May, 2001 and 

Xu et al., 2012). The stiffness is worked out considering the free body diagram of a 

diagonal shear crack, see Fig. 2. 
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Figure 2. Free body diagram of a diagonal shear crack with a linear pattern in reinforced concrete 

 

The axial and shear (dowel) force in the steel bar crossing the diagonal crack can be linked 

to the crack opening (rotational) angle θ using the elastic properties of the bar and the 

geometry of the deformation mechanism. When the shear crack reaches the neutral axis, 

the following equations apply: 
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where sE and sG are the modulus of elasticity and  the shear modulus of the reinforcing 

steel, sΣ is the reduced cross-section of the bar according to Gastebled & May, and ,s unbl is 

the unbonded length of the reinforcement. sG and sΣ can be expressed as: 
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cr c cs s= α   (6) 

 

xz′ 

φ

sF

dV

ca

V

M

cF

cV hd
d x−

x

V

θ

x

2c cε ≤ ε

1
,2 s unbl

suΔ
svΔ

1
,2 s unbl



 211 

where cs is the maximum crack spacing, and 0.5 ≤ cα ≤ 1.0 according to Marti et al. (1998) or 

cα = 0.71 according to Reineck (1991). 

 

Tension stiffening (Clark & Spiers, 1978; Gilbert & Warner, 1978; Hsu & Zhang, 1996; Wu 

& Gilbert, 2008; Wu, 2010 and Lárusson et al., 2012) represents the tensile stress transfer 

resistance of concrete via the bond between concrete and reinforcement. This is reflected by 

the fact that a cracked reinforced concrete member in tension is stiffer than the naked bar. 

 

  

Figure 3. Concrete tension stiffening: (a) tension chord with embedded reinforcing steel; (b) bare 

reinforcing bar; (c) comparison of stiffness of embedded steel and bare steel bar according to Wu, 

(2010) and Lárusson et al. (2012)  

 

With respect to the free body diagram shown in Fig. 2, a set of equilibrium equations can 

be formulated: 
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Substitution of sF and dV from Eqs. 1 and 2 into Eq. 9, results in: 
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the extra force work can be expressed as two times the variation of the energy required for 

critical crack propagation: 
 

,2 s unb fM W l b Gδθ = δ = δ  (11) 

where fG is the fracture energy required for crack propagation in any cracked solid body 

with a given width of b. Accordingly, the shear resistance of the beam is calculated as 

given by Gastebled & May: 
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where gd is the maximum aggregate size that is assumed to be 20 mm, and cf is the 

concrete cylinder compressive strength. A semi-empirical formula for the calculation of the 

position of the diagonal crack was proposed by Kim and White (1991): 
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where ρ is the reinforcement ration of the concrete member. In the research of Gastebled & 

May, the depth of the compression zone x is assumed to be x = 0.2 d and z′ = 0.1 d . Also, 

the angle of the shear crack ϕ is assumed to be 45° and the fracture energy is taken from the 

MC90’s expression (eq. 13). Xu, Zhang and Reinhardt (2012) developed this model using 

the mode-II fracture energy, which is calculated as IIf IIc2 / cG K E= (Sarkhosh, 2014). 

4 Behaviour of a shear crack under sustained loading 

After the shear crack has reached the neutral axis, under the effect of sustained loading 

two mechanisms are expected to occur: the first mechanism is crack opening at the middle 

of the crack, due to a reduction of the modulus of elasticity in time (effect of creep). 

Initially, the bond creep is assumed to be zero and therefore the tensile force and the dowel 

force of the reinforcement remain the same. Subsequently, the effect of bond creep is 

introduced leading to opening of the crack at the level of the reinforcement. 

If the bond creep is assumed to be 0, the following expression can be derived: 
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where 0θ is the shear crack opening angle (Fig. 2, right) due to immediate loading by V at 

time 0t . 
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where λ is the load intensity factor (ratio of sustained load to ultimate load).  Here, if the 

external work done by the applied force δW is less than two times the elastic potential 

energy for fracturing eU , fracture does not occur, so: 
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where creepθ is the crack opening angle due to the creep effect, which can be written as a 

function of the initial crack opening angle 0θ : 

 

0creep wθ = θ ϕ  (21) 

 

where wϕ is a function of the opening of the crack due to the effect of creep. Accordingly: 
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where uV follows from Eq. 12 and λ is the load intensity factor. Now, the margin of shear 

safety can be introduced as: 
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Figure 4. A crack that opens at mid-height due to the creep effect 

 

Effect of bond creep 

In a concrete beam, shear-flexure cracks as well as shear-tension cracks result from a tensile 

stress in the concrete caused by external (e.g. applied load) effects. When the crack reaches 

the reinforcing bars, the opening of the crack is controlled by the quality of bond between 

concrete and steel. Under sustained loading, the neighbourhood of a crack is affected by 

creep of the concrete adjacent to the reinforcing steel, which results in an increase of the 

slip between concrete and steel in time. 

In time dependent problems, two counteracting mechanisms play the most significant 

roles in widening of the crack near the reinforcement. The concrete tensile stress associated 

with tension stiffening induced creep deformation contributes to an expansion of the 

concrete between the cracks, which obviously reduces the crack opening. On the other 

hand, drying shrinkage causes a volume reduction in the concrete blocks between the 

cracks, which results into a gradual opening of the cracks (Chong, 2004). The crack 

widening in time at the level of the reinforcement is: 
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Due to the fact that the influence of shrinkage on widening of the crack is far more 

dominant than the influence of concrete tensile stress and creep in closing the crack, the 

width of a crack in a RC concrete member generally increases with time. The crack 

widening according to Eq. 24 can be written in form of a creep function as: 
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Here again, the crack opening angle increases in time due to bond creep and if the external 

work due to sustained loading is smaller than the required energy for fracture, the beam 

does not fail: 
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Therefore, the shear safety margin ς under sustained loading can be written as: 
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Eq. 27 is suitable for the sake of analysis where the creep of bond and the creep of concrete 

can be well estimated. However, in experiments, it is perhaps difficult to separate the crack 

opening due to creep of concrete and due to bond creep. Therefore a ratio of crack width at 

time t to the width at time t0 can be formulated as: 
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where ( )w t and 0( )w t are crack widths at times t and 0t , respectively.  

If the normal and shear stresses across the crack surface are known, the crack width can be 

calculated according to Frénay (1989, 1990 and 1991). Based on experiments on time-

dependent shear transfer on plain and reinforced concrete specimens with a single crack, 

Frénay proposed an empirical model for the development of crack width and crack sliding 

in time: 
 

0( ) ( )[1 ( )]ww t w t t= + ϕ  (29) 

0( ) ( )[1 ( )]st t tδ = δ + ϕ  (30) 

 

where wϕ and sϕ are creep coefficients for the crack width w and the crack sliding δ, 

respectively. The creep coefficients are given for a cube concrete strength between 30 MPa 

and 70 Mpa, reinforcement ratio sρ = 0, 1.12% and 2.24%, and for different normal and 

shear stresses on the crack. 
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5 Shear failure model based on bilinear shear crack 

The model with the linear inclined shear crack, presented in the previous section, does not 

consider the effect of aggregate interlock, which has been proven to play an important role 

in the shear strength of concrete beams (Yang, 2014). To overcome that disadvantage, a 

nonlinear crack pattern is assumed as presented in Fig. 5. Here, the sliding of the crack in 

the lower part can be related to the angle of rotation θ, and the horizontal length of the 

crack cca . 

 

Figure 5. Free body diagram of a bilinear shear crack in reinforced concrete 

 

By means of the elastic properties of the bar and the geometry of the deformation 

mechanism, the axial and shear (dowel) force in the steel bar crossing the diagonal crack 

can be associated with the angle of rotation θ and the length of the horizontal part of the 

crack cca . When the shear crack reaches the neutral axis, the following equations can be 

formulated: 
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where aF and aV are the horizontal and the vertical components of the aggregate 

interlocking force due to shear sliding δ, respectively, b is the beam width, aτ is the shear 
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stress acting across the crack faces, and aσ is the normal stress transmitted across the crack. 

aτ and aσ can be calculated according to the rough crack model proposed by Walraven 

(1980). The model was later introduced in the fib Model Code 2010: 
 

( ){ }0.8 0.70.04 1.8 0.292 0.25f c cC f w w f− − τ = − + + − δ  
 (35) 

( ){ }0.63 0.550.06 1.35 0.242 0.19f c cC f w w f− − σ = − + + − δ  
 (36) 

 

where τ  is the shear stress in MPa, σ is the normal stress, δ is the shear displacement 

(sliding), w is the crack width both in mm, and fC is an aggregate effectivity factor, which 

is 1.0 if the aggregate does not fracture upon cracking of the concrete. For concrete with 

weak aggregates, or high strength concrete (with strong cement paste), in which most of 

the particles fracture at crack propagation, a value of about 0.35 applies for fC . 

 
In this study a simplified model for aggregate interlock is used with a linear relation for 

crack sliding and crack opening. Therefore, the aggregate interlock model of Eqs. (35) and 

(36) is approximated by: 
 

1[0.125 ]a f cC w f−τ = δ  (37) 

1[0.08 ]a f cC w f−σ = δ  (38) 

 

where w is the opening of the shear tension crack, and δ is the shear crack sliding.  

The approximation of stresses due to aggregate interlock is shown in Fig. 6. For a concrete 

strength of cf = 30 MPa. Eqs. (37) and (38) overestimate the stresses for small values of δ, 

and underestimate the stresses for large values of δ. However, the proposed model 

assumes that in the critical fracture state, the shear resistance can be calculated by means of 

the energy release due to opening of the inclined crack and debonding of reinforcement 

and concrete. It will be discussed later that the required energy up to fracture of the 

inclined crack, is related to the ratio of crack sliding to crack width δ/w. Therefore it is 

important that the ‘approximate’ values according to Eqs. (37) and (38) predict  δ/w ratios 

for different stresses, close enough to the model of Walraven. Fig. 7 shows the δ/w ratios 

for shear stresses τ between 1.0 MPa and 8.0 MPa. The approximated δ – w relations show  

consistent results with the rough crack model of Walraven (1980). 
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Figure 6. Relations between shear stress τ and normal stress σ, crack width w and crack sliding δ, 

( cf  = 30 MPa) 

 

 

       

 

Figure 7. Relations between δ and w for different shear stresses τ ( cf = 30 MPa) 
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The shear crack sliding in the diagonal part of the shear crack can be formulated as (Fig. 5): 
 

sin cosa av uδ = Δ φ − Δ φ  (39) 

 

In the case of a linear shape of the crack (Fig. 2), the shear sliding δ is zero: 
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whereas in the case of a bilinear crack δ follows from: 
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Substituting Eqs. (37), (38) and (41) into Eq. (33), the horizontal component of the aggregate 

interlock force can be written as: 
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With respect to the free body diagram shown in Fig. 5, the following set of equilibrium 

equations is obtained: 
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Substituting sF , dV and aF from Eqs. (31)-(35) into Eq. (45), yields: 
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According to the fundamental relation of fracture mechanics and the energy theorem, at 

the critical fracture state, when the required energy for fracture is released, the variation of 

the extra force work can be expressed as two times the variation of the energy required for 

critical crack propagation. As the energy is released in two regions (crushing of aggregates 

and debonding of concrete and steel), for each region the following equilibrium equations 

can be written: 
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1 ,1 ,2e s unb IfW U l b Gδ = = δ  (47) 

1 ,2 2e IIfW U wb Gδ = = δ  (48) 

1 ( )c ccW V a aδ = + δθ  (49) 

 

where IfG and IIfG are the energy consumptions in Modes I and II, respectively. 

Considering 0.5IIc IIf cK G E= , the shear resistance of the beam is calculated as: 
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in which 0.322( /10)c cmE f= , IfG is Mode I fracture energy and can be acquired from Eq. 

(13), and the pure Mode II fracture toughness of concrete IIcK is recommended by 

Reinhardt & Xu (1998) to be: 

 

0.0255 1.024 [MPa m ]IIc cK f= +  (51) 

 

If the depth of the compression zone x is assumed to be x = 0.2d and z′ = 0.1d and the angle 

of the shear crack φ is assumed to be 45° (According to Gastebled & May), a simplified 

expression for the shear resistance is obtained as presented in Eq. (52). The first term is 

related to the shear transfer mechanism between concrete and reinforcement (bond effect) 

and the second term is related to the aggregate interlock effect. 
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However, the horizontal length of the crack cca , is still unknown. For the best fit to the 

results, the following expression as a function of ca , was found from a comparison with 

test results, as will be presented in the next section: 
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6 Verification of the results of the analytical model with experiments 

The shear resistance of experiments on reinforced concrete beams without stirrups, taken 

from the ACI-DAfStb shear database (Reineck et al., 2013), will be compared with the 

calculated shear resistance according to Eq. (52) as well as the recommendation of ACI 318-

08 (2008), BS 8110 (1997), Eurocode 2 (2005), fib Model Code 2010 (2012) and the proposed 

models by Gastebled & May (2001), Bažant & Yu (2004) and Xu et al. (2012). The mean 

values of the empirical equations (without safety factors), which are given in Section 1.6 in 

Sarkhosh (2014), will be used. Moreover, a statistical analysis on the distribution of the 

ratio of experimental values to theoretical shear resistances ( exp / calv v ) for the various 

formulas is also conducted in order to further examine the quality of proposed model. 

 

The ACI-DAfStb shear database (Reineck, 2013) includes over 1300 tests on reinforced 

concrete beams, which covers a wide range of the parameters of shear span to depth ratio 

a/d , reinforcement ratio sρ , effective depth d, and concrete strength cf . The empirical 

equations for predicting the shear resistance of reinforced beams without stirrups are best 

to predict the shear-flexure failure in normal strength concrete members. Of course, the 

empirical equations have not been derived for the prediction of the shear resistance of 

beams with relatively small sizes, or very low concrete strengths. In view of that, the 

experiments with the following conditions have been selected from the database: 

 
• Members with a/d ratios of at least 2.5 

• Members with sρ ratios of at least 0.7 

• Members with effective depths d higher than 150 mm 

• Members with cf higher than 20 MPa and lower than 110 MPa 

• Members with b > 50 mm 

 

Accordingly, a total number of 393 experiments from the shear database have met the 

criteria given above and have been selected for the further comparison of the various 

formulas. The summary of the experiments and the calculated shear resistances have been 

presented by Sarkhosh (2014). The results of the statistical evaluations using all 393 beams 

are given in Table 1, where the ratio of exp calv v according to Eq. (52) is reasonably close to 

the expected value of 1.0 with a coefficient of variation COV = 0.163. It should be noted 

that the value of exp calv v = 1.0 is obtained by means of the assumed value of cca in Eq. (53) 
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The calculated shear resistance according to fib MC2010 is based on the Level II 

approximation and gives the same results as the model given in CSA-04.  

It can also be seen in Table 1 that almost all empirical formulas (except the model proposed 

by Bažant & Yu) give a lower mean value of the shear resistance calv than the experiments 

expv . In the proposed model of Bažant & Yu the parameter 0κ = 0.457  for the mean shear 

resistance, gives an overestimated shear resistance, but nevertheless this model and the fib 

MC2010 model give the lowest coefficient of variation in comparison with the other 

models. 
 

Table 1. Statistical analysis for exp calv v ratio of the various calculation equations 

 ACI 

318-08 

EC2/ 

MC90 

MC10/ 

CSA04 

BS 

8110 

Bažant 

& Yu 

Gastebled 

 & May 

Xu et 

al. 

Eq.  52 

Mean 1.32 1.13 0.92 1.16 0.87 1.43 1.22 1.00 

SD 0.284 0.171 0.124 0.172 0.115 0.218 0.211 0.163 

COV 0.215 0.150 0.134 0.148 0.133 0.152 0.173 0.163 

LCL5%* 0.85 0.85 0.72 0.88 0.68 1.07 0.87 0.73 

UCL95%* 1.79 1.42 1.13 1.45 1.06 1.78 1.56 1.27 

*Lower and upper confidence limit: 5%LCL = Mean –1.645 SD ; 95%UCL = Mean +1.645 SD 

 

As shown in Fig. 8, the proposed model according to  Eq. 52 is able to give the closest shear 

resistance to the experiments while the model of Gastebled & May gives the most 

conservative results. Fig. 9 shows the plot of the exp calv v ratio of the various calculation 

equations against the reinforcement ratio sρ . It can be seen from Fig. 9  that an increase of 

the reinforcement ratio, causes a slight underestimation in the prediction of the shear 

resistance. The best prediction of the shear resistance is related to the beams with a 

reinforcement ratio between 1.0 and 2.5, which is most representative for structures in 

practice. 

The size effect on the prediction of the shear resistance of RC beams without stirrups is 

shown in Fig. 10. In the experiments of Bhal (1969), Kostovos (1997), Walraven (1978) and 

Taylor (1972), a decrease of the nominal shear resistance expv is observed as the beam 

depth increases. However, not all models are able to accurately predict the nominal shear 

resistance as the effective depth increases (Fig. 10, left). The size effect is not considered in 

the ACI 318-08 provision, so the shear resistance according to this model for effective 
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depths d lower than 300 mm is very conservative. Although the shear resistance of 

members with small sizes is governed by the mix design, which results in a high scatter of 

some models, as shown in Fig. 10, the exp calv v ratio according to Eq. (52) is very close to 

the expected value of 1.0. 
 

 

 

 

 

         Figure 8. exp calv v as a function of a / d 

shear span to depht ratio a d

exp calv v

shear span to depht ratio a d

exp calv v
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Fig. 13 shows the effect of concrete strength on the prediction of the shear resistance of 

concrete beams by the various equations. In case of low and normal strength concrete ( cf < 

70 N/mm2), the shear resistance prediction according to Gastebled & May and ACI 318-08 

generally underestimates the shear resistance. 

 
 

 

 

 

         Figure 9. exp calv v as a function of sρ  

reinforcement ratio %s
s

w

A
b d

ρ =

reinforcement ratio %s
s

w

A
b d

ρ =

exp calv v

exp calv v



 225 

 

 

 

 

 
 

 

 

  
         Figure 10. exp calv v as a function of d 
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        Figure 11. exp calv v as a function of cf  
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7 Extension of the bilinear crack model to include sustained loading 

Similar to the linear crack model, the bilinear crack model under sustained long-term 

loading involves the creep effect: 
 

2 2 29
2 26

0
2 0.7 2

2
0

2 ( )
( ) (0.8 ) 0.72

[ ( ) ( )]( )

21.034 [0.0255 ( ) 1.024] [ ( )] 3
0.9

2 0.8[ ( ) ( )]( )

If s s
u cc

c cc

f cc c c cc cc

c cc

G t E
v t d a d

d w t w t a a

C a f t f t a a
d

dd w t w t a a

ρ
 = + + + +

 +
+ + + 

+   

 (54) 

 

Clearly, the time dependent shear resistance of the bilinear crack model depends on 

several parameters such as the reinforcement ratio cρ and the length of the horizontal part 

of the shear crack cca and is, admittedly, too complicated for practical use. However it 

offers the opportunity to evaluate the effect of time-dependent parameters such as ( )fG t , 

( )cf t and w(t) on the shear resistance of reinforced concrete beams. Therefore, a parametric 

study will be carried out to investigate those effects. 

 
In order to verify the analytical model for inclined shear cracking under sustained loading, 

the shear safety margin is calculated according to Eq. (55) for all 14 beams, which have 

been tested in long-term loading (Sarkhosh, 2014): 
 

( )
1u

u

v t
v

ς = >
λ

 (55) 

where uv and ( )uv t are given in Eqs. (52) and (54), respectively, and λ is the load intensity 

factor, defined as the ratio between loading level in the sustained loading test and the 

mean shear resistance at short term loading. 

The time-dependent parameters such as the ratio of concrete strength at time t to the 

strength at time 0 0[ ( ) ( )]c ct f t f t , the ratio of midspan deflection at time t to the deflection at 

time 0 0[ ( ) ( )]t t tΔ Δ , the mean and maximum of the crack width 0 mean[ ( ) ( )]w t w t , 

0 max[ ( ) ( )]w t w t and the ratio of the diagonal deformation 0( ) ( )DD t DD t have been 

measured in time for each specimen and the results are given in Table 2. The fracture 

energy at time t is calculated according to Eq. (58). 

 

(( ) )cm cc cmf t t f= β  (according to fib MC2010 and EC2) (56) 

0.18( ) 73[ ( )]f cmG t f t=  (57) 
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0.18( ) [ ( )]f f ccG t G t= β  (58) 

where ( )cmf t is the mean concrete compressive strength at an age of t days, ( )cc tβ is the 

time development function and s, a and β are constants, which depend on the strength 

class of cement and curing conditions. 

In Eq. (54) the ratio of crack width 0( ) ( )w t w t should be calculated for the critical shear 

crack. However, the maximum crack width ratio [ ]0 max( ) ( )w t w t was sometimes difficult to 

measure for a single crack, particularly shortly after load application. This explains the lack 

of data in the row regarding [ ]0 max( ) ( )w t w t in Table 2. On the other hand, considering the 

mean value of crack width ratio [ ]0 mean( ) ( )w t w t is also not appropriate due to stress 

redistribution in the beam which causes closing of some cracks and opening of some other 

cracks. If the shear safety margin 1ς is calculated according to Eq. (59), by means of the 

ratio of [ ]0 mean( ) ( )w t w t , the results in Table 2 show a large scatter with a little positive 

correlation with the experiments. 
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 (59) 

 

Nevertheless, development of the diagonal deformations, which were presented in Part I 

of this paper, is an alternative for the crack width ratio, as the LVDT’s used to measure the 

diagonal deformations cover the critical shear cracks. As shown in Part I of this paper, the 

development of the diagonal deformation at one side (right or left) is larger than at the 

other side. In the row regarding the 0( ) ( )DD t DD t in Table 2, the maximum diagonal 

deformation is given for each beam. The shear safety margin 2ς , which is calculated 

according to the diagonal deformation ratio of each specimen, is given in the last row of 

Table 2: 
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 (60) 

 

The results show consistent trends with respect to the beams which have failed (S4B6 and 

S7B6) and those which have persisted: 
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The lowest values of 2ς are 0.75 and 0.91, which refer to the specimens S4B6 and S7B6, 

respectively. The former failed after 2.5 hours and the latter failed after 44 hours under 

sustained loading. Specimen S3B6 with a shear safety margin 2ς of 0.93, persisted the 

sustained loads for 127 days, but failed after 1 cycle of unloading and reloading with a 

shear resistance equal to ,calc 5%uV . 

Specimen S5B6 with a shear safety margin 2ς of 0.98, persisted the sustained loading for 

600 days. At the end of the program, when the beam was loaded to failure, a shear 

resistance equal to ,calc 5%uV was obtained. The rest of the beams with shear safety margin 

above 1.0 persisted under sustained loading.  

The values of the shear safety margin 2ς , which are calculated according to Eq. 60 are 

rather conservative. That is due to the fact that the ratio of 0( ) ( )DD t DD t refers to the 

opening of two or more shear cracks in time and this causes an underestimation of the 

shear resistance under sustained loading ( )crv t . 

For a more convenient interpretation of the results, the values of the shear safety 

margin 2ς are plotted versus the DD(t) / DD(t0) ratio in Fig 14. The data can be associated 

with a linear trend-line. This graph represents the shear safety margin, with respect to the 

development of the diagonal deformation in time in the reinforced concrete beam. The 

solid line in Fig. 14 represents the mean prediction, whereas the dashed lines represent the 

5% confidence limits. When the diagonal deformation increases with  more than 25% of the 

initial value 0( )DD t , the shear safety margin is generally lower than 1.0. 

In Fig 13a, the shear safety margin 2ς is plotted versus the load intensity factor. According 

to this graph, the shear safety margin reduces generally when the load intensity increases. 

The shear safety margin can be lower than 1.0 when the load intensity is larger than 0.92.  

 

                 

          Figure 12. Shear safety margin versus the DD(t) / DD(t0) ratio 

2

shear safety
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( )
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However, a load intensity equal to 0.92 is beyond the characteristic value of the short-term 

shear resistance. 

According to Table 2 in Part I of this paper (Sarkhosh, 2014) the ratio of the lower 

confidence limit of shear resistance to the mean value in Series 7, which has the largest 

coefficient of variation, equals 5% ,meanLCL uV = 0.9. The shadowed area in Fig. 15b 

represents the load intensities larger than the characteristic value of the shear resistance. 

As a conclusion, a shear safety margin greater than 1.0 is expected for the specimens 

loaded up to the characteristic value of the short-term shear resistance. 
 

 

                 

 

                

 

Figure 13. Shear safety margin versus the load intensity λ ; the shadowed area in figure (b) 

represents the scatter of the shear resistance (5% fractile) according to the short-term monotonic 

tests 
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8 Conclusions 

• With respect to the time-dependent parameters in Eq. (54), a parametric study was 

conducted to investigate the effect of each variable on the shear safety margin ς. The 

most significant decrease of ς is related to the load intensity and crack opening 

displacement in time. The increase of the material properties of concrete such as ( )fG t  

and ( )cf t shows a positive effect on the shear safety margin: yet the influence of an 

increase of the compressive strength is likely to be insignificant. 

• With the shear model developed in this study, based on a bilinear shear crack, it is 

possible to mobilize the contribution of aggregate interlock in a consistent way. The 

aggregate interlock contribution develops in the lower part of the inclined shear crack, 

due to crack rotation around the crack tip in the upper part. In this way the crack faces 

are subject to inverse shear displacement of the crack faces and generate the interlock 

stresses contributing to the shear resistance.  

• The bilinear shape of the shear crack represents a significant improvement in 

modelling against former models based on a linear crack shape in predicting the shear 

resistance in a consistent way. Further improvements in this development have 

meanwhile been developed at TU Delft (Yang, 2014) 

• Aggregate interlock is as well an important element for the explanation why sustained 

loading  does not have to be regarded in shear. Aggregate interlock shows a hardening 

behavior. Crack sliding leads to an increased aggregate interlock resistance, which 

compensates for other time dependent effects. 

• This study has demonstrated that although reinforced concrete beams under sustained 

loading with high load intensity deform due to creep and some cracks open in time, no 

reduction of the shear resistance is reported at the end of long-term loading. 

Accordingly, no reduction factor is required for shear resistance of reinforced concrete 

beams without stirrups under sustained loading. 
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