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Baker Trusses have the ability to be more efficient in material usage than conventional truss 

types and are thus of interest to be considered by engineers. It is known that under certain 

parameters and load conditions the web-nodes of a Baker Truss can become unstable in the 

out-of-plane direction. Up to now the way in which for this failure mechanism is checked in 

practice, is by calculating the member forces and the geometric stiffness of each web-node. In 

this paper, two equations are given; one for a top-loaded and one for a bottom-loaded Baker 

Truss, allowing for direct calculation of the web-nodal geometric stiffness without the need 

to calculate the member forces. These equations show that most web-nodes for the top-loaded 

condition are unstable and that most web-nodes for the bottom-loaded condition are stable. 
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1 Introduction 

The Baker Truss (Figure 1), also known as the discrete optimal truss, is a type of truss first 

conceived by William Baker. Linear elastic analysis shows that for many depth-to-span 

ratios and load-patterns, the Baker Truss is much more efficient (i.e. uses less material to 

achieve equal stiffness or strength) than conventional truss types [Baker, 2013]. It is 

therefore of interest to use this truss to save on material and cost, but also to create new 

meaningful architecture [SOM, 2020 (a); SOM 2020 (b)]. 

 

A major drawback of the Baker Truss is that under certain conditions (e.g. span-to-depth 

ratio or load pattern) the web-nodes can become unstable. In this instability web-nodes 

displace in the out-of-plane direction under the influence of in-plane loading. The stability 

of such a node is governed by the sign of the geometric stiffness (Annex A). This paper 

presents the generic expression for the geometric stiffness of the web-nodes of a uniformly 

top-loaded Baker Truss and a similar expression for a uniformly bottom-loaded Baker 

Truss. 
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2 Method 

Figure 1 shows the truss which is to be analysed including the parameters used. 

Dimensions L and h denote the total span and height of the truss respectively. Variable b is 

the total number of bays (panels) per halve span. The web-nodes are located at half height 

and in horizontal direction at three quarters width of the bays. For the example truss in 

Figure 1, b is equal to 4. n denotes the bay number, starting at 1 on either support and 

increasing by 1 for every bay towards the middle of the truss. Finally, with F denoting the 

downwards directed point-loads at all upper nodes of the truss, as shown in the figure, the 

problem is uniquely defined. 

 

 

Figure 1:  Parameters of the Baker Truss 

 

The top and bottom chord nodes are fixed in out-of-plane direction e.g. by the chords 

being continuous or by floor slabs at the height of the chords. Therefore, only the web 

nodes can buckle in the out-of-plane direction. The geometrical stiffness is given by 

equation (1). For a derivation of this equation see Annex A. 

𝑘𝑛 =  ∑
𝑁𝑖

𝐿𝑖

𝑗
𝑖=1  (1) 

in which 

kn is the geometric stiffness of node n; 

j is the number of nodes connected to node n; 

Li is the length of the member connecting node n to node i; 

Ni is the normal force of the member connecting node n to node i; 

 

The interpretation of the geometric stiffness is that a node that is moved perpendicular to the 

plane of the truss will push back with a force. The magnitude of this force is the absolute value 
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of the displacement times the geometrical stiffness kn. Consequently, a node is stable if its 

geometrical stiffness is positive. 

 

A Baker truss is statically determinate and therefore all member forces can be determined using 

only equilibrium equations. The derivation is based upon analytically derived member forces 

being substituted in equation (1) to obtain the desired equation. 

3 Derivation 

This section presents the full derivation of the expression for the geometric stiffness of any 

web-node in a top-loaded Baker Truss. The derivation of the bottom-loaded truss only 

requires changes in a few equations of the top-loaded truss derivation and is not included. 

The derivation can be divided into five consecutive steps: 

1. Deriving the support reactions, followed by the forces in web members of bay 1 

(leftmost bay). 

2. Deriving the expression relating the forces in web members of bay n to bay n – 1. 

3. Decoupling the previous expression such that each relevant member of bay n 

individually relates to the same member of bay n – 1. 

4. Converting the expressions relating forces in bay n to the forces in bay n – 1 (i.e. a 

series) to an equation containing n as a variable. 

5. Determining all member forces and substituting these into the general expression 

for nodal geometric stiffness. 

 

The first step involves calculating the support reaction SV, as well as the member forces A1, 

C1 and D1 shown in the figure below. 

 

𝑆𝑉 =  −𝐹 (
2𝑏−1

2
) = −𝐹 (𝑏 −

1

2
) (2) 
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∑ 𝐹𝑉,1 =  0 = −
ℎ𝐶1

2𝐿1
+ 𝑆𝑉 = −

ℎ𝐶1

2𝐿1
− 𝐹 (𝑏 −

1

2
) (3) 

∑ 𝐹𝑉,2 =  0 = −
ℎ𝐴1

2𝐿2
−

ℎ𝐶1

2𝐿1
+

ℎ𝐷1

2𝐿2
= −

𝐴1

𝐿2
+

𝐶1

𝐿1
+

𝐷1

𝐿2
 (4) 

∑ 𝐹𝐻,2 =  0 =
3𝐿𝐴1

8𝑏𝐿2
−

𝐿𝐶1

8𝑏𝐿1
+

3𝐿𝐷1

8𝑏𝐿2
=

3𝐴1

𝐿2
−

𝐶1

𝐿1
+

3𝐷1

𝐿2
 (5) 

In which L, L1, L2 and b denote the total span length, the length of the shorter web 

members, the length of the longer web members and the total number of bays per half 

span respectively. Four equations and four unknowns means a solution for the unknowns 

can be found: 

𝐴1 =
𝐹

ℎ
(

2𝐿2

3
−

4𝑏𝐿2

3
) (6) 

𝐷1 =
𝐹

ℎ
(

2𝑏𝐿2

3
−

𝐿2

3
) (7) 

The next step is to relate An and Dn to An-1 and Dn-1. The figure below shows the naming of 

relevant members and nodes. 

 

∑ 𝐹𝑉,3 = 0 =
ℎ𝐴𝑛−1

2𝐿2
+

ℎ𝐵𝑛

2𝐿1
+ 𝐹 (8) 

∑ 𝐹𝑉,4 = 0 = −
ℎ𝐷𝑛−1

2𝐿2
−

ℎ𝐶𝑛

2𝐿1
 (9) 

∑ 𝐹𝑉,5 = 0 = −
ℎ𝐴𝑛

2𝐿2
−

ℎ𝐵𝑛

2𝐿1
+

ℎ𝐶𝑛

2𝐿1
+

ℎ𝐷𝑛

2𝐿2
= −

𝐴𝑛

𝐿2
−

𝐵𝑛

𝐿1
+

𝐶𝑛

𝐿1
+

𝐷𝑛

𝐿2
 (10) 

∑ 𝐹𝐻,5 = 0 =
3𝐿𝐴𝑛

8𝑏𝐿2
−

𝐿𝐵𝑛

8𝑏𝐿1
−

𝐿𝐶𝑛

8𝑏𝐿1
+

3𝐿𝐷𝑛

8𝑏𝐿2
=

3𝐴𝑛

𝐿2
−

𝐵𝑛

𝐿1
−

𝐶𝑛

𝐿1
+

3𝐷𝑛

𝐿2
 (11) 

The above system of four equations and six unknowns can be reduced to a system of 2 

equations and four unknowns in which Bn and Cn have been eliminated. 

𝐷𝑛 = −
2𝐴𝑛−1

3
−

4𝐹𝐿2

3ℎ
+

𝐷𝑛−1

3
 (12) 

𝐴𝑛 =
𝐴𝑛−1

3
+

2𝐹𝐿2

3ℎ
−

2𝐷𝑛−1

3
 (13) 

For the third step the equations (12) and (13) are to be decoupled such that in the 

expression for Dn, Dn is only related to Dn-1 and that in the expression for An, An is only 

related to An-1. An expression relating An-1 to Dn-1 could accomplish this goal, and it is 

derived by creating a cut in bay n as shown in the figure below. 
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∑ 𝑀6 = 0 = −𝑥𝐴𝑛 − ℎ𝐸𝑛 +
𝑛𝐿

4𝑏
𝐹(𝑛 − 1) +

𝑛𝐿

2𝑏
𝑆𝑉 = −𝑥𝐴𝑛 − ℎ𝐸𝑛 + 𝐹 (

𝐿𝑛2

4𝑏
−

𝑛𝐿

2
) (14) 

∑ 𝑀7 = 0 = −𝑥𝐷𝑛 − ℎ𝐸𝑛 + (
𝑛𝐿

4𝑏
−

3𝐿

4𝑏
) 𝐹(𝑛 − 1) + (

𝑛𝐿

2𝑏
−

3𝐿

4𝑏
) 𝑆𝑉 =

                                     −𝑥𝐷𝑛 − ℎ𝐸𝑛 + 𝐹 (
𝐿𝑛2

4𝑏
−

𝑛𝐿

2
−

3𝑛𝐿

4𝑏
+

3𝐿

4
+

3𝐿

8𝑏
) (15) 

 

In the above equations x denotes the orthogonal distance from the force in member An to 

node 6, which is equal to the orthogonal distance from the force in member Dn to node 7. 

Equations (14) and (15) can be combined into one equation in which En has been eliminated 

and thus the only unknowns left are An and Dn. 

𝐷𝑛 = 𝐴𝑛 +
𝐹

𝑥
(−

3𝑛𝐿

4𝑏
+

3𝐿

4
+

3𝐿

8𝑏
) (16) 

When n is substituted by n-1 the sought-after relation is found. 

𝐷𝑛−1 = 𝐴𝑛−1 +
𝐹

𝑥
(−

3𝑛𝐿

4𝑏
+

3𝐿

4
+

9𝐿

8𝑏
) (17) 

Combining equations (17) and (12) as well as (17) and (13) yields the desired pair of 

decoupled series. 

𝐴𝑛 = 𝑐1𝐴𝑛−1 + 𝑐2𝑛 + 𝑐3  

𝑐1 = −
1

3
          𝑐2 =

𝐹𝐿

2𝑏𝑥
          𝑐3 =

2𝐹𝐿2

3ℎ
−

𝐹𝐿

2𝑥
−

3𝐹𝐿

4𝑏𝑥
 (18) 

𝐷𝑛 = 𝑐4𝐷𝑛−1 + 𝑐5𝑛 + 𝑐6  

𝑐4 = −
1

3
          𝑐5 = −

𝐹𝐿

2𝑏𝑥
         𝑐6 = −

4𝐹𝐿2

3ℎ
+

𝐹𝐿

2𝑥
+

3𝐹𝐿

4𝑏𝑥
 (19) 

The fourth step is to convert the derived series into an equation relating An to just A1 and n, 

as well as for Dn. This is done by firstly expanding equation (18) into a summation of 

series. 

𝐴𝑛 = 𝑐1𝐴𝑛−1 + 𝑐2𝑛 + 𝑐3 = 𝑐1
𝑛−1𝐴1 + 𝑐2((𝑐1

𝑛−2 + 𝑐1
𝑛−3 + ⋯ + 𝑐1

1 + 𝑐1
0) + (𝑐1

𝑛−3 + 𝑐1
𝑛−4 +

⋯ + 𝑐1
1 + 𝑐1

0) + ⋯ + (𝑐1
1 + 𝑐1

0) + (𝑐1
0)) + 𝑐2(𝑐1

𝑛−2 + 𝑐1
𝑛−3 + ⋯ + 𝑐1

1 + 𝑐1
0) +

𝑐3(𝑐1
𝑛−2 + 𝑐1

𝑛−3 + ⋯ + 𝑐1
1 + 𝑐1

0) (20) 

Making use of the known relation (21) [Stewart, 2011], equation (20) can be rewritten as 

equation (22). In an identical manner an equation for Dn can be derived.  
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𝑥𝑛−1 + 𝑥𝑛−2 + ⋯ + 𝑥1 + 𝑥0 =
𝑥𝑛−1

𝑥−1
          𝑥 ≠ 1    and    𝑛 ≥ 1 (21) 

𝐴𝑛 = 𝐴1𝑐1
𝑛−1 +

𝑐2

𝑐1−1
(

𝑐1
𝑛−1

𝑐1−1
+ 𝑐1

𝑛−1 − 𝑛 − 1) + 𝑐3 (
𝑐1

𝑛−1−1

𝑐1−1
) (22) 

𝐷𝑛 = 𝐷1𝑐4
𝑛−1 +

𝑐5

𝑐4−1
(

𝑐4
𝑛−1

𝑐4−1
+ 𝑐4

𝑛−1 − 𝑛 − 1) + 𝑐6 (
𝑐4

𝑛−1−1

𝑐4−1
) (23) 

For the final step, the total geometric stiffness kn will be split up in two parts: the 

contribution by the normal force in members An and Dn, ka, and the contribution of 

members Bn and Cn, kb. A simple expression for ka can be found by substituting equations 

(22) and (23) into equation (24) followed by substituting equations (6) and (7) as well as all 

constants of equations (18) and (19). 

𝑘𝑎 =
𝐴𝑛

𝐿2
+

𝐷𝑛

𝐿2
=

𝐹

ℎ
(

2𝑏−
5

2

(−3)𝑛 −
1

2
) (24) 

Equation (11) can be rewritten in terms of k1 opening up a simple way of calculating k2. 

0 =
3𝐴𝑛

𝐿2
−

𝐵𝑛

𝐿1
−

𝐶𝑛

𝐿1
+

3𝐷𝑛

𝐿2
  

𝑘𝑏 =
𝐵𝑛

𝐿1
+

𝐶𝑛

𝐿1
= 3𝑘𝑎 =

𝐹

ℎ
(

6𝑏−
15

2

(−3)𝑛
−

3

2
) (25) 

Thus, the total geometric stiffness k can be calculated: 

𝑘𝑛 = 𝑘𝑎 + 𝑘𝑏 =
𝐹

ℎ
(

2𝑏−
5

2

(−3)𝑛 −
1

2
) +

𝐹

ℎ
(

6𝑏−
15

2

(−3)𝑛 −
3

2
) =

𝐹

ℎ
(

8𝑏−10

(−3)𝑛 − 2) (26) 

Q.E.D. 

4 Results 

The geometric stiffness of the web-nodes of a uniformly top-loaded baker truss is given by 

𝑘𝑛 =
𝐹

ℎ
(

8𝑏−10

(−3)𝑛 − 2) (27) 

The geometric stiffness of the web-nodes of a uniformly bottom-loaded baker truss is given 

by 

𝑘𝑛 =
𝐹

ℎ
(

8𝑏+2

(−3)𝑛 + 2) (28) 

Since F and h do not influence the sign of the geometric stiffness in equations (27) and (28), 

these can be taken out of the equation so that a unit-less measure for the nodal stability is 

left. Figure 2 shows a plot of this stability measure for each web-node of a top-loaded truss 

(left) and a bottom-loaded truss (right) for the case b = 8. 
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Figure 2a: Stability of a top-loaded truss;  Figure 2b: Stability of a bottom-loaded truss; 

most web nodes are unstable.   most web nodes are stable. 

 

The limits that the geometric stiffness approaches as n increases, for a constant value of b, 

is for the top- and bottom-loaded truss respectively equal to equation (29) and (30). 

 

lim
𝑛→∞

𝐹

ℎ
(

8𝑏−10

(−3)𝑛 − 2) = −2
𝐹

ℎ
 (29) 

lim
𝑛→∞

𝐹

ℎ
(

8𝑏+2

(−3)𝑛 + 2) = 2
𝐹

ℎ
 (30) 

5 Conclusion 

This study shows that the geometric stiffness of the web-nodes of a uniformly top- and 

bottom-loaded Baker Truss can be calculated using a simple expression, greatly reducing 

the number of steps involved and giving more insight when compared with the 

conventional method of first calculating all member forces. The results of the equations 

have been compared to calculations done by a custom FEM code and are accurate up to 

many numbers after the decimal point (Annex B). It is shown that, for a positive value of 

the forces F, most nodes of a top-loaded truss are unstable, while most nodes of a bottom-

loaded truss are stable. When the forces are directed upwards the opposite is true in which 

most nodes of a top-loaded truss are stable, and most nodes of a bottom-loaded truss are 

unstable. It can be concluded that for most Baker Trusses some of the web-nodes need to 

be supported or stiffened by some moment transferring nodes in the out-of-plane direction 

in order to guarantee stability. For top-loaded Baker Trusses this is even true for most of 

the web-nodes. 
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Annex A. Derivation of the geometric stiffness equation 

This annex presents the derivation of the general expression for the geometric stiffness of a 

node in a truss. The working axis of the stiffness is perpendicular to the plane of the truss. 

The assumption is made that all nodes connecting to the node of which the geometric 

stiffness is to be determined are fixed in the out of plane direction. Consider a node n 

connected by one member per node to j nodes. 

 

Node n is displaced by u in the z-direction (out-of-plane). Because all nodes connected to n 

are fixed in the out-of-plane direction, each member i with a length Li is rotated by an angle 

𝜃𝑖 =
𝑢

𝐿𝑖
. The force exerted on node n by the normal force in member i, in the deformed state, 

is split up in a component in z-direction and a component in yi-direction. 

 

The component of the force in yi-direction in the undeformed state is equal to the normal 

force in member i, Ni, since in this case the member is aligned with the yi-axis. In the 

deformed state the component of the force in yi-direction exerted on node n must remain 
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equal to the undeformed state in order to preserve nodal equilibrium in the x,y-plane. 

Assuming that u, and by extension θi, is small, the component of the force in z-direction can 

be calculated. 

𝐹𝑖,𝑧 = −𝜃𝑖𝑁𝑖 = −𝑢
𝑁𝑖

𝐿𝑖
 (1) 

The general definition of stiffness is used in which a positive stiffness corresponds to a 

force in the opposite direction of the displacement. The force is taken as the sum of forces 

in z-direction of all members connected to node n. 

𝑘𝑛 =  −
1

𝑢
∑ 𝐹𝑖,𝑧 =

𝑗
𝑖=1 −

1

𝑢
∑ −𝑢

𝑁𝑖

𝐿𝑖
=

𝑗
𝑖=1 ∑

𝑁𝑖

𝐿𝑖

𝑗
𝑖=1  (2) 

Q.E.D. 

 
 
 
 
 
 
 

Annex B. Verification 

Table 1: Difference between FEM-calculated kn and equation-calculated kn for several Baker Trusses 

Load 

type 

F [kN] h [m] b n FEM kn 

[kN/m] 

Equation kn 

[kN/m] 

Difference 

Top 10 5 2 1 -8.00000 -8.00000 0.00000% 

Top 10 5 2 2 -2.66667 -2.66667 0.00000% 

Top 15 7 4 1 -20.0000 -20.0000 0.00000% 

Top 15 7 4 2 0.952381 0.952381 0.00000% 

Top 15 7 4 3 -6.03175 -6.03175 0.00000% 

Top 15 7 4 4 -3.70370 -3.70370 0.00000% 

Bottom 12 8 6 1 -22.0000 -22.0000 0.00000% 

Bottom 12 8 6 2 11.33333 11.33333 0.00000% 

Bottom 12 8 6 3 0.222222 0.222222 0.00000% 

Bottom 12 8 6 4 3.925925 3.925925 0.00000% 

Bottom 12 8 6 5 2.691358 2.691358 0.00000% 

Bottom 12 8 6 6 3.102881 3.102881 0.00000% 

 


