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The reassessment of existing movable bridges in The Netherlands has created the need for 

acceptance or rejection criteria to assess whether the machineries meet certain design 

demands. However, the existing design code NEN 6786:2001 Rules for the design of movable 

bridges defines a limit state design, meant for new machineries, which is based on simple 

linear spring-mass models. These models, as first proposed by Stroosma in 1980, are valid as 

long as damping is negligible and the externally applied loads, such as motor and braking 

torques, are assumed to be constant. However, observations show that these assumptions lead 

to a more stringent reassessment of existing bridges. As a result, existing bridge machineries 

do not confirm the model predictions and should unduly be replaced. 

In fact, the powertrain of movable bridges are nonlinear systems consisting of many 

mechanical components, such as, couplings, shafts, gears and push-pull rods, with significant 

damping. Besides, the excitation of externally applied torques by motors and brakes are time-

dependent and smooth.  

In this paper, a model is developed that overcomes the limitations of the existing modelling 

approach. First, the classical semi-definite model is amended by an extra term which accounts 

for damping, using three load cases: opening from closed position, acceleration or 

deceleration and braking. The model gives an upper bound of the peak forces or torques 

occurring in the powertrain during normal operations and emergency braking. Subsequently, 

we discuss a novel nonlinear discrete model that allows one to deal with the time-

dependency of the externally applied torques, such as, torque-speed characteristics of electric 

motors and braking torque characteristics. 
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1 Introduction 

The dynamic loads have hardly been involved in assessing the safe design of the bridge 

machineries in the distant past, so that one may be tempted to neglect its significance on 

movable bridges. However, this would be a premature judgment since the bridge 

machinery will undergo dynamic excitations due to external live loads such as wind, 

internal forces, inertia and gravity imbalance. Therefore, the engineers nowadays are 

usually advised to take the dynamic forces into account, as they are a significant 

component of the design loading and must be given primary consideration. Although, the 

machinery design starts with calculation of the decisive dynamic forces, that the bridge 

structure needs to resist or overcome in order to move, one cannot find overall 

mathematical models in the literature that is specifically used to determine the dynamic 

loads on bridge machineries. 

 

Nevertheless, a significant progress was made in the Netherlands regarding the theoretical 

framework of movable bridge dynamics and its practical application when D. Stroosma 

proposed to use a simplified dynamic mass-spring model to determine the dynamic loads 

on the machinery parts during bridge operation in the eighties of the last century [1]. After 

identifying the various components, their physical properties and characteristics, Stroosma 

constructed a mathematical model of a torque regulated bridge machinery, which 

represents an idealisation of the actual physical system as shown in Figure (1). His model 

is a linear discrete-parameter system with two-degree-of-freedom (2-DOF), whose 

behaviour is described by a second-order differential equation in a rotating system. 

 

 
Figure 1. Dynamic model schematisations of a drawbridge (left) and a bascule bridge (right) 
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The first degree of freedom m1 will represent the mass moment of inertia of the drive side 

of the system, which is the motor, and m2 physically implies inertia of the driven side of 

the system, such as bridge decks and counterweights. k is the equivalent rotational stiffness 

of all connected parts of the powertrain, such as shafts, gears and couplings. Figure 2 

shows a common way to make a diagram of this rotating system (left) and its equivalent 

translational system (right), These two systems and therefore the terms torque and forces 

will be used interchangeably in this paper. 
 

For the first time, the Netherlands Standardisation Institute (Nederlands Normalisatie 

Instituut, NEN) issued certain calculation rules based on this model in 2001, which are 

implemented in the Dutch code for designing movable bridges, NEN 6786:2001 NL [2] 

with a supplement in 2002 (NEN 6786:2001/A1:2002 NL). NEN 6786 is updated in 2015 

and led to the latest version in 2017 (NEN 6786:20017). Hence, nowadays NEN 6786 

requires to take into account the dynamic forces and provides the user some simple 

analytical formulas. However, for the case of simplicity the damping ratio and the 

excitation by externally applied torques have not been modelled explicitly. The resulting 

deviations from the real world are considered as model uncertainties and in combination 

with other uncertainties accounted for by using semi-probabilistic partial factors. 

Therefore, the model does not fully incorporate the actual dynamic behaviour of the 

system. Since then, there has been no improvements proposed to his model. 
 

In 1990 a vibration measurement is performed by TNO, the Netherlands Organisation for 

applied scientific research, on six bridges: four bascule and two drawbridges [5] in order to 

determine the damping of vibrations during bridge operation. Based on the measurements, 

 

 
Figure 2. Dynamic model schematisations of a rotating system (left) and an equivalent translating 

system (right) 
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it is concluded that a bascule bridge without push-pull-rods, also known as ”spring 

buffers”, have a damping ratio of 0.4 to 0.7%. The measured bascule bridges with push-

pull rods have a higher damping ratio from 2.5 to 6.0%. The measured damping ratio of 

drawbridges on the first natural frequency is greater than 10% and on the second natural 

frequency is approximately 2.0%. This has not led to any fundamental changes in the 

mathematical modelling of the bridge machineries or the calculation rules stated in the 

code, which are based on the same damping for all bridge types. 

 

In this paper, the mathematical model of Stroosma is examined during starting, 

accelerating or decelerating and braking at full speed. Then an extension of the model is 

proposed to include damping effects and nonlinearity of externally applied excitations. A 

comparison between the results obtained from both models is also included. The 

governing equations in this paper are constructed methodically for easy implementation. 

The equations are suitable for e.g. the study of structural safety of torque regulated bridge 

machineries. 

2 Undamped linear system with constant loads 

In this section, the motor torque, which is opening the bridge from closed position, 

accelerating or decelerating it in an intermediate position, and the braking torque at a 

certain speed are approximated as a constant force. This approximation is based on the 

assumption that the externally applied forces are not depending on the displacements and 

velocities. Therefore, in this first step, our interest lies in the motion characteristics of a 

movable bridge and the response of the system to an action force, which is and remains 

constant. At t = 0, the system will go through some transient behaviour. This will be 

observed by vibrations occurring during the transient time until a steady state is reached. 

The constant force function F(t) is depicted in Figure 3 and is defined mathematically as 

follows 
 

F(t) = F   for all  t (1) 

2.1 Opening from closed position without damping 

We begin by considering the horizontal vibration of the simple spring-mass system of 

Figure 4, which illustrates the undamped free vibration of the bridge opening from closed 

position. In the actual case, when the prime mover applies an acceleration force aF , then,  
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       Figure 3. Constant force function             Figure 4. Opening from closed position with the static 

                                                                          force included force, representing the wind load, the 

                                                                          self-weight and variable deck weight of the bridge 

 

due to the presence of clearances, an angle must first be cleared by the motor shaft m1 

before being able to engage with the bridge m2 . By that time, m1 has already attained a 

velocity of v0 . Thus v0 is the initial velocity of the motor shaft and other components 

moving directly with it just before the bridge starts to move at time t = t0 = 0 seconds. 

Furthermore, F2 is the static force, representing the wind load, the self-weight and variable 

deck weight of the bridge. Therefore, F2 corresponds to the force that must be generated to 

hold or move the bridge without acceleration. Obviously, F1 is then the total force acting 

on m1 , which refers to the force on the motor shaft due to acceleration or deceleration aF , 

as well as the static force F2 . Which means F1 = F2 + aF . The direction of aF depends on the 

closing or opening motion of the bridge deck. The initial conditions for the 2-DOF 

translational system at t = 0 are 
 

x
Fx
k

x v
x

1

2
2

1 0

2

(0) 0

(0)

(0)
(0) 0

=

= −

=
=





 (2) 

Then the equations of motion become 

m x k x x F1 1 1 2 1( )+ − =  (3) 

m x k x x F2 2 2 1 2( )+ − = −  (4) 

Dividing by the masses and subtracting one equation from the other, gives 

k k F Fx x x x
m m m m

1 2
2 1 2 1

1 2 1 2
( ) ( )( )− + + − = − −   (5) 

the reduced system to a single-degree-of-freedom by substituting x = x x2 1− gives 

F Fx x
m m

2 1 2

1 2
+ω = − −  (6) 
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where 

k k
m m

2

1 2
ω = +  (7) 

Then the initial conditions for t = 0 are 

Fx x x
k
2

2 1(0) (0) (0)= − = −  (8) 

x x x v2 1 0(0) (0) (0)= − = −    (9) 

Introducing m
m m

2

1 2
ε =

+
, the general and particular solution of this differential equation 

becomes 
F F v FFx t t t

k k k
1 2 0 21( ) (1 )( ) cos( ) sin( )ε − − εε

= ω − ω − −
ω

 (10) 

Then the maximum spring force can be computed as 

k
kvF t F F F F2 20

1 2 1 2( ) ( ( )) ( ) (1 )= ε − + − + ε + − ε
ω

 (11) 

Simplification gives 

k
kvF t F F F F F2 20

1 2 1 2 2( ) ( ( )) ( ) ( )= ε − + + ε − +
ω

 (12) 

If the rotor of the motor is assumed to be clamped against vibrations by the magnetic field 

of the stator, m1 can be taken very big, then ω as defined in Equation 7 becomes 

k
m

2

2
ω =  (13) 

By substituting aF = F1 − F2 and k m2
2ω = , this equation becomes the same as mentioned 

in NEN 6786:2001 [2] in case of opening from closed position, however, without the partial 

factors. However, when the initial displacement x2(0) is assumed to be zero, because the 

bridge in closed position is resting on its supports, then the maximum spring force after 

simplifications can be computed as 

 

k
kvF t F F F F F F2 20

1 2 2 1 2 2( ) ( ( ) ) ( ) ( )= ε − + + + ε − +
ω

 (14) 

This results in a formula Equation 14, which is slightly different from Equation 12. 

2.2 Undamped vibration during accelerating or decelerating 

We consider a bridge that initially moves with a constant velocity v0 , then it undergoes a 

deceleration in intermediate positions under the influence of a force F1 . Since F2 acting on 
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m2 refers to the static load as mentioned in Section 2, it is assumed that F2 remains 

unchanged in magnitude and direction. However, to this force, there is an opposed an 

equal reaction force on m1 . 

 

 

Figure 5. Decelerating the bridge from a constant speed, while opening F1 = aF − F2 . Note that the 

velocity v0 during this stage is the nominal speed of the motor, which is not the value v0 when 

starting the bridge. 
 

The effect of F2 can be accounted for by including it into the initial conditions. This results 

into the following initial conditions for the system. 

x
Fx
k

x v
x v

1

2
2

1 0

2 0

(0) 0

(0)

(0)
(0)

=

= −

=
=





 (15) 

Defining x = x2 − x1 , the system can be reduced to a single-degree-of-freedom as follows  

F Fx x
m m

2 1 2

1 2
+ω = −  (16) 

Note that the dynamics of this system would be exactly the same as when the bridge starts 

from rest at open position and closes with a constant acceleration under the influence of a 

force F1 . Because when the bridge is at rest, then x x2 1(0) (0) 0− =  , which implies the same 

result for the initial condition regarding the velocity. The equilibrium position of the 

system is when x = 0. Then the general form of the solution becomes 

 
x t A t B t C( ) cos( ) sin( )= ω + ω +  (17) 

where C is the particular solution and it is found as follows 

F F
m m F m F m FC k k k m m k m m k
m m

1 2

1 2 1 2 2 2 2

1 2 1 2
1 2

−
= = + −

+ ++
 (18) 
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Coefficient A can be found using Equation 17 and the initial conditions. Coefficient B = 0 

and can be found from the derivative of Equation 17 and the initial conditions. Substituting 
m

m m
2

1 2
ε =

+
 , A, B and C and after rearrangement of the terms, then the solution becomes 

 
F F F F Fx t t
k k k k k
1 2 1 2 2( ) ( )cos( ) ( )= − ε − ε ω + ε + ε −  (19) 

The force acting on the spring is computed as kF t kx t( ) ( )= . Then kF t( ) becomes 

kF t F F t F F F1 2 1 2 2( ) ( ) cos( ) ( )= − + ε ω + + ε −  (20) 

Therefore, Equation 20 can be written as 

kF t F t F t F1 2 2( ) (1 cos( )) (1 cos( ))= ε − ω + ε − ω −  (21) 

The maximum value of the spring force kF max during opening can be derived from 

Equation 21. 

open
kF F F F1 2 2max 2 2= ε + ε −  (22) 

As mentioned before, F1 is the total force that causes acceleration or deceleration in the 

system and F2 refers to the static load due to self-weight, wind and variable deck weight. 

Therefore, F1 is consisting of two forces, a force as high as the static force F2 plus a force, 

which is the dynamic contribution aF to accelerate or decelerate the system, when it is 

respectively, in rest or has a constant velocity. In case of decelerating while opening the 

bridge F1 = aF − F2 . Substitution into Equation 21 gives 

 

k aF t F t F2( ) (1 cos( ))= ε − ω −  (23) 

This is the case whenever the force F1 acts on the same direction of the static force F2 . 

Hence, for the maximum load on the prime mover we obtain 
 

open
akF F F2max 2= ε −  (24) 

Following the same methodology for the closing situation, the equation for the maximum 

spring force kF max becomes 
 

close
kF F F Fmax 1 2 22 2= − ε + ε −  (25) 

This will be the case, whenever the force F1 acts on the opposite direction of the static force 

F2 . In case of decelerating the bridge while closing F1 = F2 + aF and substitution gives 
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close
k a aF F F F F F Fmax 2 2 2 22 ( ) 2 2= − ε + + ε − = − ε −  (26) 

Note that the dynamics of this system would be exactly the same as when the bridge starts 

from rest at closed position and opens with a constant acceleration under the influence of a 

force F1 . Combining both Equation 24 and 26 gives an absolute maximum value for the 

spring force 

k aF F Fmax 22= ε +  (27) 

2.3 Undamped vibration during braking at full speed 

The process of braking is the same as decelerating the system. Therefore, the system in 

Section 2 also applies for this case, if we replace F1 by brF . Hence, in order to analyse this 

load combination by the application of brakes, we use a system shown in Figure 6 which is 

equivalent to Figure 5. 

                                         
Figure 6. Braking the system from a constant speed, while opening brF = aF − F2  

 

This load situation refers to an uncontrolled emergency stop by means of mechanical 

brakes. Again, we write the same initial conditions as stated in Equation 15, including the 

effect of the static load. The force acting in the spring is then obtained to be equal to 

Equation 23. This is the case whenever the braking force brF acts on the same direction of 

the static force F2 . Therefore, substitution of F1 by brF gives 

 

k brF t F t F t F2 2( ) (1 cos( )) (1 cos( ))= ε − ω + ε − ω −  (28) 

The maximum value is given as 

open
brkF F F F2 2max 2 2= ε + ε −  (29) 

On reversing the direction of the velocity, we get a braking force brF in the opposite 

direction of the static force F2 as follows 

 
close
k brF F F Fmax 2 22 2= − ε + ε −  (30) 
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Equation 30 can be multiplied by −1 in order to get a positive value for the brF . Then the 

equation becomes 
close
k brF F F Fmax 2 22 2= ε − ε +  (31) 

The maximum absolute value of kF max for both situations can be combined in one equation 

as follows 

k brF F Fmax 22 1 2= ε + − ε  (32) 

Note that the braking force is not constant, because it is in fact a friction force. After the 

motor shaft comes to a standstill due to application of the braking force, then the braking 

force will act as a reaction force holding the shaft against any further rotation, till the deck 

comes to a standstill as well. 

3 Linear systems with damping 

3.1 Opening from closed position with viscous damping 

The system of Figure 7 illustrates the damped free vibration of a linear system opening 

from closed position including a damper. As mentioned earlier, F2 corresponds to the force 

that must be generated to hold or move the bridge without acceleration and F1 is the total 

force acting on m1 , which refers to the acceleration or deceleration force together with the 

static force. Variable c is the damping constant and the other variables are the same as 

described in Section 2. The initial conditions at t = 0 are 
 

Fx x x
k
2

2 1(0) (0) (0)= − = −  (33) 

x x x v2 1 0(0) (0) (0)= − = −    (34) 

 
Figure 7. Opening from closed position with damping aF F F1 2= +  

Then the equations of motion become 

m x c x x k x x F1 1 1 2 1 2 1( ) ( )+ − + − =    (35) 

m x c x x k x x F2 2 2 1 2 1 2( ) ( )+ − + − = −    (36) 

Dividing by the masses and subtracting one equation from the other, gives 
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c c k k F Fx x x x x x
m m m m m m

1 2
2 1 2 1 2 1

1 2 1 2 1 2
( ) ( )( ) ( )( )− + + − + + − = − −     (37) 

The reduced system to a single-degree-of-freedom by substituting x x x2 1= − gives 

F Fx x x
m m

2 1 2

1 2
2+ ζω +ω = − −   (38) 

where 
c c

m m1 2
2ζω = +  (39) 

k k
m m1 2

( )ω = + ω∈  (40) 

Solving this ordinary differential equation with the given initial conditions gives the 

following solution 

t

t

ex t v km m F km F m k m
km m

e v km m F km F m k m
km m

F m F m
m m

2

2

( 1)
2 2 2

0 1 2 1 2 2 1 22 2
1 2

( 1)
2 2 2

0 1 2 1 2 2 1 22 2
1 2

1 2 2 1
2

1 2

( ) 1 1 ( )
2 1

1 1 ( )
2 1

(41)

−ζ+ ζ − ω

− ζ+ ζ − ω

    = − ω + ζ + ζ − + ζ + ζ − −ω +        ζ − ω

    + ω + −ζ + ζ − + −ζ + ζ − −ω −        ζ − ω
+

−
ω  

By substituting m mk
m m

2 1 2

1 2

+
ω = the expression k m2

2−ω becomes mk
m

2

1
− . Simplifying 

Equation 41 gives 

t

t

ex t v km m F km F km
k m m

e v km m F km F m
km m

F m F m
k m m

2

2

( 1)
2 2

0 1 2 1 2 2 12 2
1 2

( 1)
2 2

0 1 2 1 2 2 22 2
1 2

1 2 2 1

1 2

( ) 1 1
2 1 ( )

1 1
2 1

(42)
( )

−ζ+ ζ − ω

− ζ+ ζ − ω

    = − ω + ζ + ζ − − ζ + ζ − +        ζ − +

    + ω + −ζ + ζ − − −ζ + ζ − −        ζ − ω
+

−
+

Using the expressions aF F F1 2= − , xie x i xcos( ) sin( )= + and i2 21 1ζ − = − ζ , because 

ζ < 1, Equation 42 can be simplified as 

( )t t
a a

a

e v m m F m t e F m tx t
k m m k m m

F m F
k m m k

2 2 2
0 1 2 2 2

2 2
1 2 1 2

2 2

1 2

sin( 1 ) 1 cos( 1 )( )
1 ( ) 1 ( )

(43)
( )

−ζω −ζω− ω + ζ − ζ ω −ζ − ζ ω
= + −

− ζ + − ζ +

− −
+

Using the expression m
m m

2

1 2
ε =

+
Equation 43 can be further simplified as 



 56 

t ta a av m F F F Fx t e t e t
k k kk

2 20 1 2
2

( )( ) sin( 1 ) cos( 1 )
1

−ζω −ζωε − ω + ζ ε ε
= − ζ ω + −ζ ω − −

−ζ
 (44) 

The force in the system is the sum of the forces in the spring and the damper 

kF t kx t cx t( ) ( ) ( )= +  . However, the force in the damper, compared to the spring force, is 

negligible, due to a combination of small velocities of the bridge and small damping ratio 

ζ , which is usually smaller than 10%. Therefore, our interest lies in determining the 

dynamic amplification factor inside the term kx t( ) as a function of the damping ratio ζ , 

while cx t( ) is ignored. Then the spring force kF t kx t( ) ( )= becomes 

 
t ta

k a a
v m FF t e t e t F F F2 20 1

22

( )( ) sin( 1 ) cos( 1 )
1

−ζω −ζωε − ω + ζ
= − ζ ω + −ζ ω ε − ε −

− ζ
 (45) 

We can now determine the time tmax , when the force is at its maximum, by solving 

k
d F t
dt

( ) 0= for the time t 

a

kv
kv Ft

2
0

0
max 2

1arctan

1

− ζ
ζ −ωε

=
− ζ ω

 (46) 

By substituting tmax in Equation 45 and simplifying, we find for the maximum force 

Z a
k a a

kv kv FF e F F F
2

2 0 0
max 2

2( ) ζ ε = ε + − + ε + ω ω 
 (47) 

where 

a

kv
F kvZ

2
0

0
2

1arctan

1

− ζ
ζ

ωε − ζ
=

− ζ
 (48) 

Z should be negative, meaning 
a

kv
F kv

2
0

0

1arctan 0− ζ
<

ωε − ζ
, otherwise 

a

kvZ
F kv

2
0

2 0

1arctan
1

 − ζζ  = −π+
 ωε − ζ− ζ  

 (49) 

According to the literature, the damping ratio ζ is usually smaller than 10%. Therefore, 2ζ  

is very small, leading to 

21 1− ζ ≈  (50) 
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Moreover, the rotor shaft is rotating inside the magnetic field of the stator, therefore, we 

may assume that free vibration of the rotor is not possible as mentioned in [1]. As a result, 

when calculating the torsional frequency of the system as mentioned in Equation 40, we 

may assume m1 is very big. Therefore, ω becomes 

k
m2

ω =  (51) 

Substituting Equation 49, 50 and 51 into Equation 47 gives 

a

kv
F kv

k a a aF e F km v v F km F F
0

0
arctan

2 2
max 2 0 0 2 2( ) 2

 
ζ −π+ 

ωε −ζ = ε + − ζ ε + ε +  (52) 

This equation can be approached by a simpler formula as the square root can be 

approximated 

( )a

kv
F kv

k a aF e F km v F F
0

0
arctan

max 2 0 2

 
ζ −π+ 

ωε −ζ ≈ ε + ζ + ε +  (53) 

If v0 is very small ( v0 → 0), then Equation 52 reduces to 

k aF e F Fmax 2(1 )−πζ= + ε +  (54) 

The expression e(1 )−πζ+ is the dynamic amplification factor as a function of ζ , which is 

equal to 2 as shown in previous section, if ζ = 0. 

3.2 Damped vibration during accelerating or decelerating 

Following the same methodology for the opening situation with damping as shown in 

Figure 7, in Figure 8 we consider a bridge that initially moves with a constant velocity v0 , 

then it undergoes a deceleration in intermediate positions under the influence of a force F1 . 

The effect of F2 can be accounted for by including it into the initial conditions. This results 

into the same initial conditions of Equation 15. Taking damping into account, the equations 

of motion become 

 

 
             Figure 8. Decelerating the bridge from a constant speed, while opening F1 = aF − F2  
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m x c x x k x x F1 1 1 2 1 2 1( ) ( )+ − + − = −    (55) 

m x c x x k x x F2 2 2 1 2 1 2( ) ( )+ − + − = −    (56) 

The reduced system to a single-degree-of-freedom by substituting x x x2 1= − gives 

F Fx x x
m m

2 1 2

1 2
2+ ζω +ω = −   (57) 

where 2ζω and 2ω are defined in Equation 39 and 7. The initial conditions for t = 0 remain 

Fx x x
k
2

2 1(0) (0) (0)= − = −  (58) 

x x x2 1(0) (0) (0) 0= − =    (59) 

Solving Equation 57 with the given initial conditions gives the following solution 

( )

( )

t

t

ex t F km F km F m m
km m

e F km F km F m m
km m

F m F m
m m

2

2

( 1)
2 2 2

1 2 2 1 2 1 22 2
1 2

( 1)
2 2 2

1 2 2 1 2 1 22 2
1 2

1 2 2 1
2

1 2

( ) 1 1
2( 1)

1 1 )
2( 1)

(60)

−ζ+ ζ − ω

− ζ+ ζ − ω

 = ζ ζ − + ζ − − +ω − 
 ζ − ω

 − −ζ ζ − + ζ − − +ω + 
 ζ − ω

−
+

ω

Using the expression ixe x i xcos( ) sin( )= + , m mk
m m

2 1 2

1 2

+
ω = , aF F F1 2= − and 

i2 21 1ζ − = − ζ because ζ < 1, Equation 60 can be simplified as 

t t
a a ae F m t e F m t F F m F mx t
k m m k m mk m m

2 2 2
2 2 2 2 2 1

21 2 1 21 2

cos( 1 ) 1 sin( 1 ) ( )( ) (61)
( ) ( )( 1)( )

−ζω −ζω− ζ ω ζ − ζ − ζ ω − −
= − + +

+ +ζ − +

Substitution of m
m m

2

1 2
ε =

+
gives for the maximum spring force kF t kx t( ) ( )=  

t a
k a a

F tF t e F t F F
2

2
22

sin( 1 )( ) cos( 1 )
1

−ζω
 ε ζ − ζ ω = −ε − ζ ω − + ε −
 − ζ 

 (62) 

Substituting ζ = 0 gives back Equation 23 without damping as mentioned in Section 2. 

Using the expression bb x b x b b b x
b

2 2 2
1 2 1 1 2

1
sin( ) cos( ) sign( ) sin( arctan )+ = + + , then the 

above formula can be simplified as 

 

t
k a aF t e F t F F

2
2

22

11( ) sin 1 arctan
1

−ζω
  − ζ  = ε − − ζ ω + + ε −
  ζ− ζ   

 (63) 

We can now determine the time tmax , when the force is at its maximum, by solving 
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 k
d F t
dt

( ) 0= for the time t 

a
t

k

t
a

F t
d F t e
dt

e F t

2
2

2

2
2

1sin 1 arctan

( )
1

1cos 1 arctan 0

−ζω

−ζω

 − ζ ζε ω −ζ ω +
 ζ
 = −

− ζ

 − ζ − ε ω −ζ ω + =
 ζ
 

 (64) 

Because t
ae F 0−ζω ε ω ≠ , therefore 

t

t

t

t n

nt

2
2

2
2

2

2 2
2

2 2
2

2

1sin 1 arctan
1cos 1 arctan 0

1

1 1tan 1 arctan

1 11 arctan arctan

1

 − ζ ζ − ζ ω +
 ζ  − ζ   − − ζ ω + =

 ζ− ζ  
 − ζ − ζ − ζ ω + =
 ζ ζ
 

− ζ − ζ
− ζ ω + = + π

ζ ζ
π

=
− ζ ω

 (65) 

Where n = 0, 1, 2, 3, … For each value of n, there is a local maximum (or minimum, when 

the sign is negative). However, in this case the global maximum (or minimum) of the force 

will be at n = 1, therefore 

tmax 21

π
=

− ζ ω
 (66) 

By substituting tmax in Equation 62 and simplifying we find for the maximum force 

open
a akF e F F F

21
2max

πζ
−

−ζ= ε + ε −  (67) 

Note that in this opening case aF F F1 2= − and therefore aF F F1 2= + . However, if we follow 

the same methodology in case of closing the bridge, we obtain 

close
k a aF e F F F

21
max 2

πζ
−

−ζ= ε + ε +  (68) 

In this closing case aF F F1 2= + and therefore aF F F1 2= − . The maximum absolute value of 

the force acting on the bridge despite the direction of the movement can be found by 

combining Equation 67 and 68 as follows 
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k aF e F F
21

max 2(1 )

πζ
−

−ζ= + ε +  (69) 

If 2ζ → 0, then this equation can be simplified further as 

k aF e F Fmax 2(1 )−πζ= + ε +  (70) 

Note that the Equation 70 is the same as Equation 54. 

3.3 Damped vibration during braking at full speed 

The system of Figure 9 can be regarded as an idealised mathematical model of a movable 

bridge, while braking by a constant braking force brF from a constant speed v0  and taking 

into account damping in the powertrain. Note that this system is the same as previous one, 

when we replace F1 by brF . Hence, in order to analyse this load combination by the 

application of brakes, we use the equivalent system of previous section. The maximum 

value of the force acting on the bridge during opening can be found from Equation 67. 

Substitution of a brF F F2= + gives 

open
br brkF e F F F F F

21
2 2 2max ( ) ( )

πζ
−

−ζ= ε + + ε + −  (71) 

Simplification gives 

open
brkF e F e F F

2 21 1
2 2max (1 ) (1 )

πζ πζ
− −

−ζ −ζ= + ε + + ε −  (72) 

On reversing the direction of the velocity in case of braking while closing the bridge, we 

get a braking force brF in the opposite direction of the static force F2 . Then the maximum 

value of the force acting on the bridge during closing can be found from Equation 68. 

Substitution of a brF F F2= − gives 

close
k br brF e F F F F F

21
max 2 2 2( ) ( )

πζ
−

−ζ= − ε − − ε − −  (73) 

Simplification gives 

 
Figure 9. Braking the damped system from a constant speed, while opening br aF F F2= −  
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close
k brF e F e F F

2 21 1
max 2 2(1 ) (1 )

πζ πζ
− −

−ζ −ζ= − + ε + + ε −  (74) 

The maximum absolute value of kF max of both situations can be combined in one equation 

as follows 

k brF e F F e
2 21 1

max 2(1 ) |1 (1 ) |

πζ πζ
− −

−ζ −ζ= + ε + − + ε  (75) 

If 2ζ → 0, then this equation can be simplified further as 

k brF e F F emax 2(1 ) 1 (1 )−πζ −πζ= + ε + − + ε  (76) 

Note that the Equation 76 is the same as Equation 70 if brF is replaced by aF F2− . 

 

 

4 The effect of damping ratio on dynamic amplification factor 

In this section, the effect of damping ratio ζ on the dynamic amplification factor aΦ is 

investigated. As introduced by the code NEN 6786:2001 [2], aΦ is taken as a constant for all 

bridge types aΦ = 1.9. In Section 2 and more specifically in Equation 27 is shown that, if 

damping is not taken into account, this value should theoretically be 2.0. However, in case 

of a damped system as shown in Equation 70, aΦ is a function of the damping ratio, 

according to the following equation 

a e
21( ) 1

πζ
−

−ζΦ ζ = +  (77) 

where 21 1− ζ ≈ for all ζ < 0.1. Therefore, we introduce ζΦ , which is depicted in Figure 10 

and defined mathematically as follows 

 

a e( ) 1 −πζ
ζΦ = Φ ζ ≈ +  (78) 

 

In contrast to the code, inserting a different damping ratio into Equation 78 for different 

bridge types, as mentioned in [5], we obtain various amplification factors for each situation 

as shown in Table 1, depending on the value of ζ . 
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5 Comparison with calculation rules from NEN 6786 

The calculation rules to compute dynamic forces in movable bridge machineries according 

to NEN 6786:2017, are based on an undamped dynamic model. However, if the damped 

model is considered by using a spring-damper-mass system, as mentioned earlier in this 

paper, then the damping effects on the calculation rules is directly included in the 

calculation rules depending on a given damping ratio ζ . In Table 2 the differences between 

the calculated maximum dynamic forces in case of an undamped and damped system are 

summarised for three load situations. 

 

 

 
                                 0      0.1    0.2    0.3    damping ratio ζ  [-]    0.8     0.9      1  

Figure 10. Dynamic amplification factor as a function of damping ratio 

 

 

Table 1. Damping-dependent dynamic amplification factor ζΦ  for different cases based on 

measurements mentioned in [5] 
Description ζ  [-] ζΦ  

Model without damping 0.0% 2.0 

Bascule bridges without push-pull rods 0.4 - 0.7% 1.99 - 1.98 

According to NEN 6786, when aΦ = 1.9 3.35% 1.9 

Average default value in this paper 5.0% 1.85 

Bascule bridges with push-pull rods 2.5 - 6.0% 1.92 - 1.83 

Drawbridges 10.0% 1.73 
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6 Models with torque-speed dependent characteristics 

In section 2 and 3, we mentioned the response to a constant load F1 . The question remains 

as to how obtain the response to a more realistic arbitrary excitation under the action of a 

force F x( ) , which is a given function of the velocity x . In coming sections, we consider the 

motor and brake torques as varying force excitations. On one hand, we distinguish the 

speed-torque characteristics of a squirrel cage motor scF x( ) and a slip ring srF x( ) motor, and 

on the other hand, we consider the characterisation of an emergency stop braking torque 

brF x( ) as a function of the speed. scF x( ) , srF x( ) and brF x( ) will be used to replace the 

constant force F1 in the previous sections. 
 
 

Table 2. Comparison of given calculation rules to compute dynamic forces in movable bridge machineries 

according to NEN 6786:2017, with a damped rotational semidefinite system. If 0ω → 0, then Equation 70 

may be used to compute the dynamic loads during opening from closed position instead of Equation 53. 

Load situations Calculations rules 

NEN 6786-1:2017 

Proposed model with damping Equivalent 

translating 

system 

Opening from 

closed position 
a aM M M kJ2 2

2 2 00.9 ( )+ ε + ε + ω  Z
a aM M e M kJ2 0 2( )+ ε + ε + ζω  Eq. 53 

Accelerating or 

decelerating 
a a aM M M2 2( ) |1 |Φ ε + + −Φ ε  aM M2 ζ+Φ ε  Eq. 70 

Braking at full 

speed 
a br aM M2|1 |Φ ε + −Φ ε  brM M2|1 |ζ ζΦ ε + −Φ ε  Eq. 76 

a a

a

k kZ
M k M k

kZ
M k

e

k
J

0 0

0 0

0

0

2

arctan if arctan 0

arctan otherwise

1 −πζ
ζ

 ω ω
= ζ < 

ωε − ζ ω ωε − ζ ω 
 ω

= ζ −π+ 
ωε − ζ ω 

Φ = +

ω =

 

In fact, k k
J J1 2

ω = + , however, as assumed in [1], free vibration of the rotor m1 in the magnetic 

field of the stator is negligible. Therefore, m1 is considered to be very big, when calculating ω. 

The notations according to Tabel 11 of NEN 6786:2017 [3] are br br EdM M ,= , EdM M2 = , 

a a EdM M ,= , J I2 2= , k C1= and 0ω = ω . 
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6.1 Modelling with a squirrel cage motor 

In this subsection we consider a movable bridge driven by a squirrel cage motor. Figure 11 

is a typical speed-torque characteristics of a squirrel cage motor. Variable s0 is the slip at t = 

0, while the x v1 0(0) = . Variable bs is the break down slip and nss is slip at the moment the 

motor reaches its nominal speed. The slip s is defined as one minus the ratio between the 

shaft rotation speed x1 and the nominal speed nsx as follows 

ns

xs
x

11= −




 (79) 

where nsx is the nominal speed of the motor at which the motor delivers the nominal 

torque. The motor is the most efficient at that point. This curve can analytically be 

approached as described in [4] by Equation 80. 

sc
bsF s

s a s a2
1 0

( ) =
+ +

 (80) 

If the rotor is not turning and starts to rotate, then the slip is 100%. This is the first 

operating point, with the starting torque stF , which is called the lock-rotor torque. At this 

point, the motor current is at maximum. Slip and motor current are reduced, when the 

rotor begins turning. We can use this point in order to determine b as follows 

st sc
bsF F

s a s a2
1 0

(1)= =
+ +

 (81) 

It can be seen from Equation 80 that the coefficient b is given by 

stb F a a1 0(1 )= + +  (82) 

We can use a second operating point, which relates to the break-down force, in order to 

find a1 and a0 . At this maximum force condition, the derivative of the force in Equation 80 

 

                                

Figure 11. Force-slip curve of a squirrel cage motor csF s( ) . The driving force of the motor is the 

motor torque. 
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with respect to slip should be zero and is given by 

sc b a sdF s
ds s a s a

2
0

2 2
1 0

( )( ) 0
( )

−
= =

+ +
 (83) 

Substituting bs s= gives 

b

b b

b a s
s a s a

2
0

2 2
1 0

( ) 0
( )

−
=

+ +
 (84) 

Equation 84 shows that when scdF s
ds

( )
0= and bs s= , the coefficient ba s2

0 = , where a0 is  

related to the break-down slip bs . 

ba s2
0 =  (85) 

Hence, the break down force is rewritten by making use of Equation 85 as 

bd
b

bF
s a12

=
+

 (86) 

Substituting Equation 85 into Equation 80, and equating sc bF s( ) and bdF , then a1 is solved 

by 

st b bd b

bd st

F s F sa
F F

2
1

(1 ) 2+ −
=

−
 (87) 

Substitution of Equation 79, 82, 85, 87 into Equation 80 gives scF s( ) , which is equivalent 

to scF x1( ) . 

st b bd b
st b

bd st
sc sc

st b bd b
b

bd st

F s F sF s s
F F

F x F x
F s F ss s s

F F

2
2

1 1 2
2 2

(1 ) 21
( ) ( )

(1 ) 2

 + −
+ +  − ↔ =

+ −
+ +

−

  (88) 

Where the starting torque stF , the break-down torque bdF and the corresponding slip bs are 

given manufacturer data of the motor. Figure 12 illustrates the process of starting to open 

the bridge from closed position by a squirrel cage motor. The initial conditions of this 

system at t = 0 are the same as mentioned earlier in Equation 2. Then the equations of 

motion become 

 
Figure 12. Opening from closed position with a force-speed characteristics of a squirrel cage motor 
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scm x c x x k x x F x1 1 1 2 1 2 1( ) ( ) ( )+ − + − =     (89) 

m x c x x k x x F2 2 2 1 2 1 2( ) ( )+ − + − = −    (90) 

6.2 Modelling of a slip ring motor 

A slip ring induction motor, also called a wound-rotor motor, provides a higher starting 

torque compared to a squirrel cage motor. The poles of the rotor are connected to slip rings 

and each pole is wired in series with a resistor, which reduces the field strength of the 

stator during start-up. The motor speed-torque characteristics is adjusted by switching off 

the resistors one by one in order to maintain a higher torque at higher speed. The effect of 

varying rotor resistance on the torque-speed characteristics of a wound-rotor induction 

motor is shown in Figure 13 [6]. Torque control by slip rings can be found in old existing 

bridge machineries. Nowadays, mainly induction motors with variable frequency drives 

are used. An overall function of the torque-speed function can be approached by a 

combination of a zig-zag function at lower speed and a torque-speed characteristics of a 

squirrel cage motor scF s( ) at higher speed as calculated in Section 6. 

bd b
sr

sc b ns

F b s b s d d b s s s
F s

F s s s s
0 0 0 1 1 0( floor( )) if

( )
( ) if

+ − + + < ≤
=  < ≤

 (91) 

where bdF and scF s( ) are defined in previous section. Constants b0 And b1 are given and 

determine the frequency and amplitude of the zigzag function, and where d0 and d1 are 

computed as follows 

 
d b b b s0 0 0 02 mod(floor( ),2)= − +  (92) 

d b b s1 0 0mod(floor( ),2)= −  (93) 

 

 

 
Figure 13. Force-slip characteristics of a slip ring motor srF s( ) , approached by a zig-zag function 
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Figure 13 shows the process of starting to open the bridge from closed position by a slip-

ring motor. The initial conditions at t = 0 are the same as mentioned earlier in Equation 2. 

Then the equations of motion become 

srm x c x x k x x F x1 1 1 2 1 2 1( ) ( ) ( )+ − + − =     (94) 

m x c x x k x x F2 2 2 1 2 1 2( ) ( )+ − + − = −    (95) 

6.3 Modelling of an emergency stop 

The concept of a rectangular pulse function can also be used in case of a speed-varying 

force such as the braking force brF x( ) , which acts in opposition to the motion of the motor 

shaft. If we consider the load situation braking at full speed, the braking force will be applied 

at nominal speed nsx until the shaft stops rotating. The application of the braking force can 

be described by a rectangular pulse function as shown in Figure 15. Taking the 

discontinuities at x = 0 and x = nsx , we can use the Heaviside step function H x( ) in order to 

write the following equation for the velocity-dependent braking force brF x( )  

 
br br nsF x F H x H x xmax( ) ( ( ) ( ))= − −     (96) 

where brF max is the maximum decelerating force of the brakes. However, the braking force 

is a sort of friction force. Therefore, we use a common friction smoothing procedure, which 

approximate the discontinuous friction at zero relative velocity and nominal speed by a 

smooth function as shown in Figure 16. Hence, before applying the braking force, the 

velocity of the system is at nominal speed. Then after applying the braking force on the 

first mass m1 , the velocity decreases until the system stops x1 0≤ . After that, the braking 

force brF x1( ) will be the same as the reaction force in the powertrain. Substituting x x1=  for 

the velocity of the motor shaft and rewriting Equation 96 we obtain 

 

 

                      
      Figure 14. Opening from closed position with a              Figure 15. Rectangular pulse as a  

      force-speed characteristics of a slip-ring motor                function of velocity 
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( )br ns ns
br

F c x c x c x x x
F x

c x x k x x x

2 2
max 1 1 2 1 2 1

1
1 2 1 2 1

arctan( ) arctan( ) 1 if 0
( )

( ) ( ) if 0
π π

 − − − < ≤= 
− + − ≤

    



  

 (97) 

where c1 and c2 are factors, which determines the rate of the smoothing approximation to 

the maximum, respectively, at zero and at rated velocities as shown in Figure 16. 

Multiplication by the quotient 2
π  is to let the smoothing curve approach unity at its 

maximum value. However, the first two terms between parentheses of Equation 97 add up 

to 2, therefore, we subtract 1 from the sum. Then the equations of motion become 

 
brm x c x x k x x F x1 1 1 2 1 2 1( ) ( ) ( )+ − + − = −     (98) 

m x c x x k x x F2 2 2 1 2 1 2( ) ( )+ − + − = −    (99) 

7 Case study 1: Effect of different motor characteristics 

In this section, the motor torque characteristics of a squirrel cage and a slip ring motor are 

investigated to demonstrate how they can influence the dynamic forces in bridge 

machineries. In order to investigate the effect of time-dependent excitations on dynamic 

behaviour of movable bridges during opening from closed position, predictions of an 

undamped model with constant loads, are compared with the results of a damped model 

with externally applied forces following specific torque-speed characteristics. The 

undamped model is shown in Section 2 as mentioned by Stroosma in [1]. The numerical 

values used for all models are presented in Table 3 and case specific quantities are 

provided in Table 4. The results are based on a numerical integration procedure using 

MATLAB. 

  
Figure 16. Smoothing of the braking force                Figure 17. Braking the bridge with a nonlinear 

brF x1( ) using an arctan-type approximation.          pulse function, while opening the bridge with 

Multi-valued braking force at zero and rated           constant speed 

velocities are neglected. 
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We compare the results of the occurring dynamic loads in the powertrain of the movable 

bridge of Table 3, while opening the bridge deck from closed position by both types of 

electric motors. The torque-speed characteristics are described in Section 6. 

 

Table 3. Parameters of the semidefinite model for case study 1 

Model data Symbol Value Unit 

Inertia of driver components m1  0.175 kgm2 

Inertia of driven components m2  0.117 kgm2 

Stiffness of driveline k  2.50 Nm/rad 

Damping constant of driveline c  0.054 Nms/rad 

Applied force by the driver F1  19.11 Nm 

Static torque on driven side F2  7.35 Nm 

Accelerating/decelerating force aF  11.76 Nm 

Nominal speed while opening nsx  102.1 rad/s 

Starting speed x0 = v0  0 rad/s 

Damping ratio ζ  0.05  – 

 

Moreover, we compare the prediction of the dynamic loads by an undamped and damped 

model with constant excitation, as mentioned respectively in Section 2 and 3. These 

predictions are also compared to the results, when calculated according to the rule, stated 

in the code NEN 6786:2017 for the load situation opening from closed position. The used 

speed-torque characteristics, of the squirrel cage motor (solid red curve), slip ring motor 

(dotted green curve) and a constant force (dashed blue curve), are shown in Figure 18 top. 

Figure 18 bottom shows the torque-speed characteristics of a slip ring motor for three 

cases. Note that the first case (dotted blue curve), when b1 = 0, corresponds with a constant 

force between s0 ≤ s < bs . For b1 =−3 the green dotted curve shows the torque-speed 

characteristics of the slipring motor with a zigzag function. The bigger b1 is, the higher this 

amplitude of the zigzag function becomes. For b1 =−6 the amplitude increases as shown 

with the dotted cyan curve. In this section, we investigate the effect of this amplitude on 

the dynamic forces in the powertrain of the movable bridges. The numerical values of the 

used parameters are presented in Table 4. 
 

The torque-speed characteristics in Figure 18 bottom leads to torque-time characteristics as 
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 shown in Figure 19 top. Note that all curves have the same maximum value as expected. 

The differences are in the course of the curves. The slip-ring motor with b1 = −6 (dotted 

cyan curve) shows more similarity with the torque-time characteristics of the squirrel cage 

motor (solid red curve) in the range of s ≤ bs . 
 

                     

                     
                    0       0.1     0.2      Speed motor shaft / nominal speed       0.9       1 

Figure 18. Motor characteristics. Top, torque-speed characteristics. Bottom, corresponding torque-

speed characteristics of a slip ring motor with three different values of b1 , which represents the 

amplitude of the zigzag function. If b1 = 0, then the force is a constant.  
 
 

Table 4. Parameters and model inputs of squirrel cage and slip ring motors 

Squirrel cage motor Symbol Value Slip ring motor Symbol Value 

Breakdown slip 1− bs  0.40 Frequency factor b0  4.7 

Rated slip 1− s0  0.03 Amplitude factor b1  0, -3, -6 

Starting force stF  11.76 Nm 1st floor factor d0  Eq. 92 

Breakdown force bdF  19.11 Nm 2nd floor factor d1  Eq. 93 
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                     0         1         2          3         Time [s]         6         7          8         9 

Figure 19. Top, torque-time characteristics of the squirrel cage and slip ring motors. Bottom, speed-

time diagrams of the squirrel cage and slip ring motors 

 

         
        0            1            2             3            4       Time [s]       6            7             8             9 

Figure 20. Occurring dynamic forces in the driveline, due to torques applied by the squirrel cage 

and slip ring motors, compared with the undamped and damped 2-DOF models and the calculation 

rules in NEN 6786 during opening from closed position 
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The torque-speed characteristics in Figure 18 bottom leads to torque-time characteristics as 

shown in Figure 19 top. Note that all curves have the same maximum value as expected. 

The differences are in the course of the curves. The slip-ring motor with b1 = −6 (dotted 

cyan curve) shows more similarity with the torque-time characteristics of the squirrel cage 

motor (solid red curve) in the range of s ≤ bs . 

 

Figure 20 shows the result of the obtained peak force according to different models. As 

expected, in case of applying the motor torque according to a speed-dependent motor 

characteristics instead of a constant force, the peak force in the powertrain becomes lower. 

As a result, we see a significant reduction in the dynamic peak forces obtained by the 

numerical models, compared to the analytical 2-DOF models and the calculation rules 

stated in the code. The amount of this reduction depends on the parameters. 

 

For this case study, we obtain the following peak forces according to the different model 

types as shown in Table 5. Taking into account the motor characteristics will give a 

reduction of approximately 30% on the dynamic part of the total force opening from closed 

position. 

 

 

 

Table 5. Peak forces according to the undamped and damped 2-DOF models with constant applied 

force F1 , as well as the numerical solved models with speed-dependent characteristics 

scF x1( ) and srF x1( )  
Model types Value of peak forces 

Undamped 2-DOF model 16.17 Nm 

Calculation rules NEN 6786:2017 15.73 Nm 

Damped 2-DOF model 15.53 Nm 

Slip ring motor b1 = 0 16.06 Nm 

Slip ring motor b1 = −3 14.45 Nm 

Slip ring motor b1 = −6 13.03 Nm 

Squirrel cage motor 13.02 Nm 
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8 Case study 2: Effect of speed-dependent braking force 

Finally, the load case braking at full speed is investigated. In order to explore the effect of a 

nonlinear braking force on the dynamic behaviour of movable bridges, predictions of a 

model with a constant maximum force are compared with the results of a speed-dependent 

braking force, which is following a specific arc-tangent smooth pulse function. The used 

dynamic model for this purpose is shown in Section 6, Figure 17. The numerical values 

used for the model are presented in Table 6 and case specific quantities are provided in 

Table 7. Figure 16 shows how the braking force brF x( ) can be approached using an arctan-

type approximation. By using different values for the smooth factors c1 and c2 as described 

in Equation 97 the plot of Figure 21 top can be drawn. Subsequently, these torque-speed 

characteristics leads to the torque-time characteristics as shown in Figure 21 bottom. Note 

that all the curves must have the same maximum value in order to ensure 
 
 

Table 6. Parameters of the semidefinite model for case study 2  

Model data Symbol  Value Unit 

Inertia of driver components m1  0.175  kgm2 

Inertia of driven components m2  0.117 kgm2 

Stiffness of driveline k  11.9 Nm/rad 

Damping constant of driveline c  0.118 Nms/rad 

Applied force by the driver brF .max  26.98 Nm 

Static torque on driven side F2  -1.4 Nm 

Accelerating/decelerating force aF  -25.58 Nm 

Nominal speed while closing nsx  -102.1 rad/s 

Equilibrium speed after braking x v0 0=  0 rad/s 

Damping ratio ζ  0.05 – 

 

 

Table 7. Various smooth factors of the braking pulse function 

Pulse function Symbol Value 

1st smoothing factor c1  0.05, 0.1, 1, 10 

2nd smoothing factor c2  0.05, 0.1, 1, 10 
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the comparability of the different curves. Therefore, the smoothed functions have to be 

multiplied with a correction factor. Hence, the differences are only in the course of the 

curves depending on the speed. Similarly to the speed-time diagram of Figure 19 bottom, 

the more the braking force is smoothed, the less steep the course of the speed curve is. 

Subsequently, also in this case study the speed-time diagram is affecting the occurring 

dynamic forces in the powertrain, because, as mentioned before, the derivative of the 

speed is acceleration, which is directly related to the force. Figure 22 shows the result of the 
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Figure 21. Braking force characteristics. Top, torque-speed characteristics. Bottom, corresponding 

torque-time characteristics at different values for the smoothing factor c1 and c2  

10−

5−

0

5

10

15

20

25

br

Braking force
F [Nm]

0

5

10

15

20

25

br

Braking force
F [Nm]



 75 

Table 8. Peak forces according to the undamped and damped 2-DOF models with constant applied 

force F1 , as well as the numerical solved models with speed-dependent characteristics brF x1( )  

Model types Value of peak forces 

Calculation rules NEN 6786:2017 20.37 Nm 

Arctan pulse with factors c1 = c2 = 10 19.97 Nm 

Arctan pulse with factors c1 = c2 = 1 19.74 Nm 

Arctan pulse with factors c1 = c2 = 0.1 18.10 Nm 

Arctan pulse with factors c1 = c2 = 0.05 17.54 Nm 

 

obtained peak force according to the models. As expected, in case of applying the 

smoothed braking torque, accordingly, the peak force in the powertrain becomes lower. As 

a result, we see a significant reduction in the dynamic peak forces obtained by the 

numerical models, compared to the calculation rules stated in the code NEN 6786:2017. 

The amount of this reduction depends on the smooth factors c1 and c2 . For this case study, 

we obtain the following peak forces according to the different model types as shown in 

Table 8. Taking into account the smoothed braking characteristics will give a maximum 

reduction of approximately 14% on the dynamic part of the total force in the spring during 

braking at full speed. 
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Figure 22. Occurring dynamic forces in the driveline, due to the applied braking torques, during 

load situation braking at full speed 
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9 Conclusions 

In this paper, the effect of damping as well as time-varying excitations on the dynamic 

forces occurring in the powertrain of movable bridges are investigated and compared to 

the calculation rules stated in the Dutch design code for movable bridges NEN 6786 based 

on 2-DOF mass-spring-damper models. 

 

First of all, three load situations, respectively, opening from closed position, acceleration or 

deceleration and braking at full speed are analysed with semidefinite 2-DOF models. A table is 

provided with slightly different calculation rules compared to the standard during 

mentioned load situations for calculating the decisive dynamic torques in the powertrain 

of movable bridges. Moreover, in contradiction with the calculation rules, it is shown that 

the effect of damping is not negligible for different bridge types, but depends on damping 

ratio ζ of the system. Especially in case of bascule bridges with push-pull rods or 

drawbridges, the dynamic amplification factor aΦ , which is assumed to be equal to 1.9 for 

all movable bridges, is reduced significantly. A damping-dependent factor ζΦ is 

introduced that gives more realistic outcomes of the dynamic forces. 
 

Secondly, the paper establishes a nonlinear numerical model for dynamic force predictions 

during opening from closed position due to the motor torque. The model consists of opening 

the bridge by torque regulated squirrel cage or slip ring motors using their torque-speed 

characteristics. A classical method is applied for calculating the torque speed curve of a 

squirrel cage motor. However, a novel analytical method is proposed to approach the 

torque characteristic of a slip ring motor in accordance with its manufacturing data. The 

first case study 26 was to compare the results obtained when using the proposed nonlinear 

models to the calculation rules derived from 2-DOF models of movable bridges with 

constant motor torques. The results show a significant reduction in the dynamic forces in 

the powertrain during opening from closed position compared to the theoretical predictions 

according to calculations in the standard.  

 

Finally, the braking torque characteristic during the load situation braking at full speed is 

investigated. An analytical modelling approach is developed for the applied braking force 

by using a pulse function. The speed-dependency effects are considered in the analytical 

approach by using arc-tangent smooth factors. The braking torque characteristic is 

presented by an analytical formula in which the influence of the smooth factors on the 
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braking torque is demonstrated. Then the load situation braking at full speed is investigated 

by a study case with various torque characteristics in numerically solved models. It is 

shown that the results obtained from the models with noticeable smooth factors give a 

significant reduction of the dynamic peak forces in the powertrain compared to the 

analytical calculation rules based on constant braking forces. 

 

Future work will focus on dynamic models for speed regulated machineries as well as 

modelling nonlinear variables as clearances and the stiffness of push-pull rods in bridge 

machineries. For the purpose of model verifications and validations, theoretical predictions 

will be compared to available data gathered from experimental research, lab and on-site 

measurements. Also attention will be given to a more realistic time dependent model for 

F2 , which represents the gravity and wind forces on the bridge. 
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